全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Short term load forecasting: two stage modelling

Keywords: Neural networks , nonlinear models , short-term load forecasting , statistical model building.

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies the hourly electricity load demand in the area covered by a utility situated in the Seattle, USA, called Puget Sound Power and Light Company. Our proposal is put into proof with the famous dataset from this company. We propose a stochastic model which employs ANN (Artificial Neural Networks) to model short-run dynamics and the dependence among adjacent hours. The model proposed treats each hour's load separately as individual single series. This approach avoids modeling the intricate intra-day pattern (load profile) displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is evaluated in similiar mode a TLSAR (Two-Level Seasonal Autoregressive) model proposed by Soares (2003) using the years of 1995 and 1996 as the holdout sample. Moreover, we conclude that non linearity is present in some series of these data. The model results are analyzed. The experiment shows that our tool can be used to produce load forecasting in tropical climate places.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133