全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reduction of Number of Association Rules with Inter Itemset Distance in Transaction Databases

Keywords: Association rules , frequent itemsets , support , confidence , Inter itemset distance , spread , data mining

Full-Text   Cite this paper   Add to My Lib

Abstract:

Association Rule discovery has been an important problem of investigation in knowledge discovery and data mining. An association rule describes associations among the sets of items which occur together in transactions of databases.The Association Rule mining task consists of finding the frequent itemsets and the rules in the form of conditional implications with respect to some prespecified threshold values of support and confidence.The interestingness of Association Rules are determined by these two measures. However,other measures of interestingness like lift and conviction are also used. But, there occurs an explosive growth of discovered association rules and many of such rules are insignificant. In this paper we introduce a new measure of interestingness called Inter Itemset Distance or Spread and implemented this notion based on the approaches of the apriori algorithm with a view to reduce the number of discovered Association Rules in a meaningful manner. An analysis of the working of the new algorithm is done and the results are presented and compared with the results of conventional apriori algorithm.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133