全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples

DOI: 10.1186/2040-2392-2-19

Keywords: autism, imprinting, copy number variation, 15q, duplication, methylation, epigenetic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Postmortem human brain tissue (Brodmann area 19, extrastriate visual cortex) was obtained from 8 dup15q, 10 idiopathic autism and 21 typical control tissue samples. Quantitative PCR was used to confirm duplication status. Quantitative RT-PCR and Western blot analyses were performed to measure 15q11-q13 transcript and protein levels, respectively. Methylation-sensitive high-resolution melting-curve analysis was performed on brain genomic DNA to identify the maternal:paternal ratio of methylation at PWS-IC.Dup15q brain samples showed a higher level of PWS-IC methylation than control or autism samples, indicating that dup15q was maternal in origin. UBE3A transcript and protein levels were significantly higher than control and autism in dup15q, as expected, although levels were variable and lower than expected based on copy number in some samples. In contrast, this increase in copy number did not result in consistently increased GABRB3 transcript or protein levels for dup15q samples. Furthermore, SNRPN was expected to be unchanged in expression in dup15q because it is expressed from the single unmethylated paternal allele, yet SNRPN levels were significantly reduced in dup15q samples compared to controls. PWS-IC methylation positively correlated with UBE3A and GABRB3 levels but negatively correlated with SNRPN levels. Idiopathic autism samples exhibited significantly lower GABRB3 and significantly more variable SNRPN levels compared to controls.Although these results show that increased UBE3A/UBE3A is a consistent feature of dup15q syndrome, they also suggest that gene expression within 15q11-q13 is not based entirely on copy number but can be influenced by epigenetic mechanisms in brain.Autism is a common neurodevelopmental disorder affecting 1 in 110 children [1], but its genetic etiology is complex and heterogeneous [2,3] Among the leading genetic causes of autism are abnormalities in proximal chromosome 15q, collectively referred to as "duplication 15 syndrome" (dup

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133