全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NeuroD2 regulates the development of hippocampal mossy fiber synapses

DOI: 10.1186/1749-8104-7-9

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice.These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.Excitatory neurotransmission in the central nervous system is mediated by post-synaptic protrusions called dendritic spines [1]. Spines are highly dynamic structures and their growth, stabilization and elimination are proposed to underlie the effects of experience on both the developing and adult brain [2,3]. The effects of neuronal activity on spine morphology are mediated by calcium signaling, which can have acute effects by modulating the existing proteins at the synapse, or can lead to lasting change by transcription-dependent mechanisms. Relatively little is known about how specific transcription factors act to coordinate activity-dependent signaling pathways to influence genes involved in spine morphogenesis.To identify molecular mediators of activity-dependent development, we previously carried out a screen for calcium-dependent transcription factors expressed in cortical neurons [4]. One gene identified in this screen was the basic helix-loop-helix (bHLH) transcription factor Neurogenic differentiation factor 2 (NeuroD2). Although bHLH genes are best characterized for their role in cell fate determination [5], NeuroD2 is expressed exclusively in post-mitotic neurons [6]. Consistent with a role in activity-dependent development, we found that NeuroD2 regulates thalamocortical c

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133