全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts

DOI: 10.1186/1749-8104-6-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response.These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and uncover an important role for meningeal and glial cells in facilitating axon regeneration. Given that these cell types interact to form inhibitory barriers in mammals, identifying the mechanisms underlying their permissive behaviors in the newt will provide new insights for improving spinal cord regeneration in mammals.Unlike mammals, adult newts have the remarkable ability to recover function after they are paralyzed by a spinal cord injury (SCI). After a complete transection injury, newts regenerate their spinal cords and regain use of their hindlimbs in as little as 4 weeks [1] (Additional file 1). This recovery requires supraspinal axons to regenerate across the lesion and re-establish connections with downstream targets and is not simply due to a reorganizatio

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133