全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2013 

Characterizing a New Surface-Based Shortwave Cloud Retrieval Technique, Based on Transmitted Radiance for Soil and Vegetated Surface Types

DOI: 10.3390/atmos4010048

Keywords: radiation: transmission and scattering, remote sensing, clouds and aerosols, Shannon information content

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness ( τ), droplet effective radius ( re), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for τ between 5 and 60 and re less than approximately 20 μm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of ?from 5 to 10 and re < 10 μm, with maximum sensitivity obtained for an overhead sun.

References

[1]  Stephens, G. Cloud feedbacks in the climate system: A critical review. J. Climate 2005, 18, 237–273, doi:10.1175/JCLI-3243.1.
[2]  Platnick, S. Vertical photon transport in cloud remote sensing problems. J. Geophys. Res. 2000, 105, 22919–22935, doi:10.1029/2000JD900333.
[3]  McBride, P.J.; Schmidt, K.S.; Pilewskie, P.; Kittelman, A.S.; Wolfe, D.E. A spectral method for retrieving cloud optical thickness and effective radius from surface-based transmittance measurements. Atmos. Chem. Phys. 2011, 11, 7235–7252.
[4]  Twomey, S.; Cocks, T. Remote sensing of cloud parameters from spectral reflectance in the near-infrared. Beitr. Phys. Atmos. 1989, 62, 172–179.
[5]  Vukicevic, T.; Coddington, O.; Pilewskie, P. Characterizing the retrieval of cloud properties from optical remote sensing. J. Geophys. Res. 2010, 115, D20211, doi:10.1029/2009JD012830.
[6]  Coddington, O.; Pilewskie, P.; Vukicevic, T. The Shannon information content of hyperspectral shortwave cloud albedo measurements: Quantification and practical applications. J. Geophys. Res. 2012, 117, D04205, doi:10.1029/2011JD016771.
[7]  Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois: Urbana, IL, USA, 1949.
[8]  Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific Publishing Co., Inc.: Hackensack, NJ, USA, 2000.
[9]  L’écuyer, T.S.; Gabriel, P.; Leesman, K.; Cooper, S.J.; Stephens, G.L. Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans—Part I: Liquid clouds. J. Appl. Meteor. Climatol. 2006, 45, 20–41, doi:10.1175/JAM2326.1.
[10]  Cooper, S.J.; L’écuyer, T.S.; Gabriel, P.; Baran, A.J.; Stephens, G.L. Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans—Part II: Ice clouds. J. Appl. Meteor. Climatol. 2006, 45, 42–62, doi:10.1175/JAM2327.1.
[11]  King, N.J.; Vaughan, G. Using passive remote sensing to retrieve the vertical variation of cloud droplet size in marine stratocumulus: An assessment of information content and the potential for improved retrievals from hyperspectral measurements. J. Geophys. Res. 2012, 117, D15206, doi:10.1029/2012JD017896.
[12]  Nakajima, T.; King, M.D. Determination of the optical thickness and effective, particle radius of clouds from reflected solar radiation measurements: I. Theory. J. Atmos. Sci. 1990, 47, 1878–1893, doi:10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.
[13]  Bergstrom, R.W.; Pilewskie, P.; Schmid, B.; Russell, P.B. Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000. J. Geophys. Res. 2003, 108, 8474.
[14]  Coddington, O.M.; Schmidt, K.S.; Pilewskie, P.; Gore, W.J.; Bergstrom, R.W.; Román, M.; Redemann, J.; Russell, P.B.; Liu, J.; Schaaf, C.C. Aircraft measurements of spectral surface albedo and its consistency with ground-based and space-borne observations. J. Geophys. Res. 2008, 113, D17209, doi:10.1029/2008JD010089.
[15]  Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509, doi:10.1364/AO.27.002502.
[16]  Pilewskie, P.; Pommier, J.; Bergstrom, R.; Gore, W.; Howard, S.; Rabbette, M.; Schmid, B.; Hobbs, P.V.; Tsay, S.-C. Solar spectral radiative forcing during the Southern African Regional Science Initiative. J. Geophys. Res. 2003, 108, 8486, doi:10.1029/2002JD002411.
[17]  Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682, doi:10.1029/97JD00237.
[18]  Kurucz, R.L. Synthetic Infrared Spectra. In Infrared Solar Physics—International Astronomical Union Symposia 154; Rabin, D.M., Jeffries, J.T., Eds.; Kluwer Acad.: Norwell, MA, USA, 1992.
[19]  Trishchenko, A.P.; Luo, Y.; Khlopenkov, K. Dynamics of the Surface Albedo over the ARM SGP Area during Spring 2003 Aerosol IOP. In Proceedings of the Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting (ARM-CONF-2004), Albuquerque, NM, USA, 22–26 March 2004.
[20]  Anderson, G.P.; Clough, S.A.; Kneizys, F.X.; Chetwynd, J.H.; Shettel, E.P. AFGL Atmospheric Constituent Profiles (0–120 km); Tech. Rep. AFGL-TR-86-0110; AFGL (OPI); Hanscom AFB: Bedford, MS, USA, 1986.
[21]  Evans, F.K. The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci. 1998, 55, 429–446, doi:10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2.
[22]  Chy?lek, P.; Ramaswamy, V. Simple approximation for infrared emissivity of water clouds. J. Atmos. Sci. 1982, 39, 171–177, doi:10.1175/1520-0469(1982)039<0171:SAFIEO>2.0.CO;2.
[23]  Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005; p. 342.
[24]  Jazwinski, A.H. Stochastic Processes and Filtering Theory; Academic Publishing: San Diego, CA, USA, 1970; Volume 64, p. 376.
[25]  Twomey, S.A.; Bohren, C.F.; Mergenthaler, J.L. Reflectance and albedo differences between wet and dry surfaces. App. Opt. 1986, 3, 431–437.
[26]  Bohren, C.F.; Clothiaux, E.E. Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; p. 472.
[27]  Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.; Hunt, R., Jr. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2002, 84, 25–41.
[28]  Coddington, O.M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P.B.; Schmidt, K.S.; Gore, W.J.; Livingston, J.; Wind, G.; Vukicevic, T. Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing. J. Geophys. Res. 2010, 115, D10211, doi:10.1029/2009JD012829.
[29]  Schmidt, S.; Bierwirth, E.; Pilewskie, P.; Redemann, J.; Brandt, R.J.; Lyapustin, A.; Gatebe, C.K.; Schaaf, C.; Kahn, R.A. Airborne Measurements of Surface Albedo in Alaska. In Proceedings of EOS Transactions—American Geophysical Union Fall Meeting 2009, Houston, TX, USA, 25–20 October 2009; Volume 90, pp. A43A–0159.
[30]  Roberts, Y.L.; Pilewskie, P.; Kindel, B.C. Evaluating the observed variability in hyperspectral earth-reflected solar radiance. J. Geophys. Res. 2011, 116, D24119, doi:10.1029/2011JD016448.
[31]  Kindel, B.C.; Qu, Z.; Goetz, A.F.H. Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm. Appl. Opt. 2001, 40, 3483–3494, doi:10.1364/AO.40.003483.
[32]  Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148, doi:10.1016/S0034-4257(02)00091-3.
[33]  Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel driven models of bidirectional reflectance. J. Geophys. Res. 1995, 100, 21077–21089, doi:10.1029/95JD02371.
[34]  Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998, doi:10.1109/36.841980.
[35]  Román, M.G.; Schaaf, C.B.; Lewis, P.; Gao, F.; Anderson, G.P.; Privette, J.L.; Strahler, A.H.; Woodcock, C.E.; Barnsley, M. Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens. Environ. 2010, 114, 738–760, doi:10.1016/j.rse.2009.11.014.
[36]  Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Trans. Signal Process. 2002, 19, 44–57, doi:10.1109/79.974727.
[37]  Moody, E.G.; King, M.D.; Schaaf, C.B.; Hall, D.K.; Platnick, S. Northern Hemisphere five-year average (2000–2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sens. Environ. 2007, 111, 337–345, doi:10.1016/j.rse.2007.03.026.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133