全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2013 

Biomass Burning Aerosols Observed in Northern Finland during the 2010 Wildfires in Russia

DOI: 10.3390/atmos4010017

Keywords: biomass burning aerosols, smoke, remote sensing, in situ measurements

Full-Text   Cite this paper   Add to My Lib

Abstract:

A smoke plume originating from the massive wildfires near Moscow was clearly detected in northern Finland on 30 July 2010. Measurements made with remote sensing instruments demonstrated how the biomass burning aerosols affected the chemical and optical characteristics of the atmosphere in regions hundreds of kilometers away from the actual fires. In this study, we used MODIS, AIRS, CALIOP, PFR, ceilometers, FTS and Brewer data to quantify the properties of the transported smoke plume. In addition, in situ measurements of aerosol concentration (DMPS), absorption (aethalometer) and scattering (nephelometer) are presented. We found that due to the smoke plume in northern Finland, the daily averaged optical thickness of aerosols increased fourfold, and MODIS retrieved AOD as high as 4.5 for the thickest part of the plume. FTS measurements showed that CO concentration increased by 100% during the plume. CALIOP and ceilometer measurements revealed that the smoke plume was located close to the surface, below 3 km, and that the plume was not homogeneously mixed. In addition, in situ measurements showed that the scattering and absorption coefficients were almost 20 times larger in the smoke plume than on average, and that the number of particles larger than 320 nm increased 14-fold. Moreover, a comparison with in situ measurements recorded in eastern Finland on the previous day showed that the transport from eastern to northern Finland decreased the scattering coefficient, black carbon concentration, and total number concentration 0.5%/h, 1.5%/h and 2.0%/h, respectively.

References

[1]  Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; Garcia-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224, doi:10.1126/science.1201224.
[2]  Witte, J.C.; Douglass, A.R.; da Silva, A.; Torres, O.; Levy, R.; Duncan, B.N. NASA A-Train and Terra observations of the 2010 Russian wildfires. Atmos. Chem. Phys. 2011, 11, 9287–9301, doi:10.5194/acp-11-9287-2011.
[3]  Mei, L.; Xue, Y.; de Leeuw, G.; Guang, J.; Wang, Y.; Li, Y.; Xu, H.; Yang, L.; Hou, T.; He, X.; et al. Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010. Biogeosciences 2011, 8, 3771–3791.
[4]  Yurganov, L.N.; Rakitin, V.; Dzhola, A.; August, T.; Fokeeva, E.; George, M.; Gorchakov, G.; Grechko, E.; Hannon, S.; Karpov, A.; et al. Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmos. Chem. Phys. 2011, 11, 7925–7942, doi:10.5194/acp-11-7925-2011.
[5]  van Donkelaar, A.; Martin, R.V.; Levy, R.; DaSilva, A.M.; Krzyzanowski, M.; Chubarova, N.E.; Semutnikova, E.; Cohen, A.J. Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmos. Env. 2011, 45, 6225–6232.
[6]  Konovalov, I.B.; Beekmann, M.; Kuznetsova, I.N.; Yurova, A.; Zvyagintsev, A.M. Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos. Chem. Phys. 2011, 11, 10031–10056.
[7]  Warneke, C.; Froyd, K.D.; Brioude, J.; Bahreini, R.; Brock, C.A.; Cozic, J.; de Gouw, J.A.; Fahey, D.W.; Ferrare, R.; Holloway, J.S.; et al. An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophys. Res. Lett. 2010, 37, L01801.
[8]  Barnaba, F.; Angelini, F.; Curci, G.; Gobbi, G.P. An important fingerprint of wildfires on the European aerosol load. Atmos. Chem. Phys. 2011, 11, 10487–10501, doi:10.5194/acp-11-10487-2011.
[9]  Portin, H.J.; Mielonen, T.; Leskinen, A.; Arola, A.; P?rj?l?, E.; Romakkaniemi, S.; Laaksonen, A.; Lehtinen, K.E.J.; Komppula, M. Biomass burning aerosols observed in Eastern Finland during the Russian wildfires in summer 2010—Part 1: In-situ aerosol characterization. Atmos. Environ. 2011, 45, 269–278.
[10]  Mielonen, T.; Portin, H.J.; Komppula, M.; Leskinen, A.; Tamminen, J.; Ialongo, I.; Hakkarainen, J.; Lehtinen, K.E.J.; Arola, A. Biomass burning aerosols observed in Eastern Finland during the Russian wildfires in summer 2010—Part 2: Remote sensing. Atmos. Environ. 2011, 45, 279–287.
[11]  Stohl, A.; Berg, T.; Burkhart, J.F.; Fj?raa, A.M.; Forster, C.; Herber, A.; Hov, ?.; Lunder, C.; McMillan, W.W.; Oltmans, S.; et al. Arctic smoke—Record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 2007, 7, 511–534, doi:10.5194/acp-7-511-2007.
[12]  Wehrli, C. Calibrations of filter radiometers for determination of atmospheric optical depth. Metrologia 2000, 37, 419–422, doi:10.1088/0026-1394/37/5/16.
[13]  Kim, S.-W.; Yoon, S.-C.; Dutton, E.G.; Kim, J.; Wehrli, C.; Holben, B.N. Global surface-based sun photometer network for long-term observations of column aerosol optical properties: Intercomparison of aerosol optical depth. Aerosol Sci. Tech. 2008, 42, 1–9, doi:10.1080/02786820701699743.
[14]  Carlund, T.; Landelius, T.; Josefsson, W. Comparison and uncertainty of aerosol optical depth estimates derived from spectral and broadband measurements. J. Appl. Meteorol. 2003, 42, 1598–1610, doi:10.1175/1520-0450(2003)042<1598:CAUOAO>2.0.CO;2.
[15]  Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for AERONET database. Remote. Sens. Environ. 2000, 73, 337–349, doi:10.1016/S0034-4257(00)00109-7.
[16]  International Ozone Services Inc. (IOS). 2012. Available online: http://www.io3.ca (accessed on 30 October 2012).
[17]  de La Casinière, A.; Cachorro, V.; Smolskaia, I.; Lenoble, J.; Sorribas, M.; Houet, M.; Massot, O.; Antón, M.; Vilaplana, J.M. Comparative measurements of total ozone amount and aerosol optical depth during a campaign at El Arenosillo, Huelva, Spain. Ann. Geophys. 2005, 23, 3399–3406, doi:10.5194/angeo-23-3399-2005.
[18]  Marenco, F.; Santacesaria, V.; Bais, A.F.; Balis, D.; di Sarra, A.; Papayannis, A.; Zerefos, C. Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (photochemical activity and solar ultraviolet radiation campaign). Appl. Opt. 1997, 36, 6875–6886, doi:10.1364/AO.36.006875.
[19]  Carvalho, F.; Henriques, D. Use of Brewer ozone spectrophotometer for aerosol optical depth measurements on ultraviolet region. Adv. Space Res. 2000, 25, 997–1006, doi:10.1016/S0273-1177(99)00463-9.
[20]  Cheymol, A.; de Backer, H. Retrieval of aerosol optical depth in the UV-B at Uccle from Brewer ozone measurements over a long time period 1984-2002. J. Geophys. Res. 2003, 108((D24)), 4800, doi:10.1029/2003JD003758.
[21]  Kazadzis, S.; Bais, A.; Kouremeti, N.; Gerasopoulos, E.; Garane, K.; Blumthaler, M.; Schallhart, B.; Cede, A. Direct spectral measurements with a Brewer spectroradiometer: Absolute calibration and aerosol optical depth retrieval. Appl. Opt. 2005, 44, 1691–1690, doi:10.1364/AO.44.001691.
[22]  Gr?bner, J.; Meleti, C. Aerosol optical depth in the UVB and visible wavelength from Brewer spectrophotometer direct irradiance measurements: 1991-2002. J. Geophys. Res. 2004, 109, D09202, doi:10.1029/2003JD004409.
[23]  Cheymol, A.; de Backer, H.; Josefsson, W.; Stuebi, R. Comparison and validation of the aerosol optical depth obtained with the Langley plot method in the UV-B from Brewer Ozone Spectrophotometer measurements. J. Geophys. Res. 2006, 111, D16202, doi:10.1029/2006JD007131.
[24]  Cheymol, A.; Gonzalez Sotelino, L.; Lam, K.S.; Kim, J.; Fioletov, V.; Siani, A.M.; de Backer, H. Intercomparison of Aerosol Optical Depth from Brewer Ozone spectrophotometers and CIMEL sunphotometers measurements. Atmos. Chem. Phys. 2009, 9, 733–741, doi:10.5194/acp-9-733-2009.
[25]  Rinsland, C.P.; Mahieu, E.; Zander, R.; Jones, N.B.; Chipperfield, M.P.; Goldman, A.; Anderson, J.; Russell, J.M., III.; Demoulin, P.; Notholt, J.; et al. Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. J. Geophys. Res. 2003, 108, 4252, doi:10.1029/2002JD003001.
[26]  Vigouroux, C.; de Mazière, M.; Demoulin, P.; Servais, C.; Hase, F.; Blumenstock, T.; Kramer, I.; Schneider, M.; Mellqvist, J.; Strandberg, A.; et al. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmos. Chem. Phys. 2008, 8, 6865–6886, doi:10.5194/acp-8-6865-2008.
[27]  Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Phil. Trans. R. Soc. A 2011, 369, 2087–2112, doi:10.1098/rsta.2010.0240.
[28]  Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS, advanced facility instrument for studies of the Earth as a system. IEEE T. Geosci. Remote Sens. 1989, 27, 145–153, doi:10.1109/36.20292.
[29]  Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, D13211, doi:10.1029/2006JD007811.
[30]  Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420.
[31]  Goddard Space Flight Center, Level 1 and Atmosphere Archive and Distribution System (LAADS Web). 2012. Available online: http://ladsweb.nascom.nasa.gov/data/search.html (accessed on 30 October 2012).
[32]  Acker, J.G.; Leptoukh, G. Online analysis enhances use of NASA earth science data. Eos. Trans. AGU 2007, 88, 14–17, doi:10.1029/2007EO020003.
[33]  Davies, D.K.; Ilavajhala, S.; Wong, M.M.; Justice, C.O. Fire information for resource management system: Archiving and distributing MODIS active fire data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 72–79, doi:10.1109/TGRS.2008.2002076.
[34]  Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Revercomb, P.W.; Revercomb, W.L.; Revercomb, D.H.; et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE T. Geosci. Remote 2003, 41, 253–264, doi:10.1109/TGRS.2002.808356.
[35]  Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J. AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteor. Soc. 2006, 87, 911–926, doi:10.1175/BAMS-87-7-911.
[36]  NASA, Giovanni, AIRS Online Visualization and Analysis. 2012. Available online: http://gdata.1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=AIRS_Level3Daily (accessed on 30 October 2012).
[37]  Winker, D.M.; Pelon, J.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 2003, 4893, 1–11.
[38]  Vaughan, M.; Young, S.; Winker, D.; Powell, K.; Omar, A.; Liu, Z.; Hu, Y.; Hostetler, C. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Proc. SPIE 2004, 5575, 16–30.
[39]  Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803, doi:10.1029/2007GL030135.
[40]  Vaisala Oyj. Ceilometer CT25K: User’s Guide; Vaisala Oyj: Vantaa, Finland, 2002.
[41]  Emeis, S.; Münkel, C.; Vogt, S.; Müller, W.J.; Sch?fer, K. Atmospheric boundary-layer structure from simultaneous SODAR, RASS and ceilometer measurements. Atmos. Environ. 2004, 38, 273–286, doi:10.1016/j.atmosenv.2003.09.054.
[42]  Eresmaa, N.; Karppinen, A.; Joffre, S.M.; R?s?nen, J.; Talvitie, H. Mixing height determination by ceilometers. Atmos. Chem. Phys. 2006, 6, 1485–1493, doi:10.5194/acp-6-1485-2006.
[43]  Hatakka, J.; Aalto, T.; Aaltonen, V.; Aurela, M.; Hakola, H.; Komppula, M.; Laurila, T.; Lihavainen, H.; Paatero, J.; Salminen, K.; Viisanen, Y. Overview of the atmospheric research activities and results at Pallas GAW station. Boreal Env. Res. 2003, 8, 365–384.
[44]  Aaltonen, V.; Lihavainen, H.; Kerminen, V.-M.; Komppula, M.; Hatakka, J.; Eneroth, K.; Kulmala, M.; Viisanen, Y. Measurements of optical properties of atmospheric aerosols in Northern Finland. Atmos. Chem. Phys. 2006, 6, 1155–1164, doi:10.5194/acp-6-1155-2006.
[45]  Hyv?rinen, A.-P.; Kolmonen, P.; Kerminen, V.-M.; Virkkula, A.; Leskinen, A.; Komppula, M.; Hatakka, J.; Burkhart, J.; Stohl, A.; Aalto, P.; et al. Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmos. Env. 2011, 45, 4042–4050.
[46]  Komppula, M.; Lihavainen, H.; Hatakka, J.; Paatero, J.; Aalto, P.; Kulmala, M.; Viisanen, Y. Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland. J. Geophys. Res. 2003, 108, 4295, doi:10.1029/2002JD002939.
[47]  Ward, D.E.; Radke, L.F. Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires; Dahlem Workshop Reports; Environmental Sciences Research Report 13; Crutzen, P.J., Goldammer, J.G., Eds.; John Wiley & Sons: Chischester, UK, 1993; pp. 53–76.
[48]  Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825, doi:10.5194/acp-5-799-2005.
[49]  Draxler, R.R.; Hess, G.D. Description of the HYSPLIT_4 Modeling System. NOAA Technical Memorandum ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997; p. 24.
[50]  Draxler, R.R.; Rolph, G.D. HYSPLIT—HYbrid Single-Particle Lagrangian Integrated Trajectory Model. Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 30 October 2012).
[51]  Rolph, G.D. Real-time Environmental Applications and Display sYstem (READY). Available online: http://ready.arl.noaa.gov (accessed on 30 October 2012).
[52]  Iinuma, Y.; Brüggemann, E.; Gnauk, T.; Müller, K.; Andreae, M.O.; Helas, G.; Parmar, R.; Herrmann, H. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. 2007, 112, doi:10.1029/2006JD007120.
[53]  Reid, J.S.; Eck, T.F.; Christopher, S.A.; Koppmann, R.; Dubovik, O.; Eleuterio, D.P.; Holben, B.N.; Reid, E.A.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 827–849, doi:10.5194/acp-5-827-2005.
[54]  Komppula, M.; Lihavainen, H.; Kerminen, V.; Kulmala, M.; Viisanen, Y. Measurements of cloud droplet activation of aerosol particles at a clean subarctic background site. J. Geophys. Res. 2005, 110, D06204, doi:10.1029/2004JD005200.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133