全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Absorption properties of Mediterranean aerosols obtained from multi-year ground-based and satellite remote sensing observations

DOI: 10.5194/acpd-13-9267-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstr m Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a~total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996–2012 with most data being from 2003–2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstr m exponent <1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000–2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004–2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005–2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94–0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89–0.90 ± 0.04). The aerosol Absorption Angstr m Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East–West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North–

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413