全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

Bound States and Supercriticality in Graphene-Based Topological Insulators

DOI: 10.3390/cryst3010014

Keywords: graphene, supercriticality, spin-orbit interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the bound state spectrum and the conditions for entering a supercritical regime in graphene with strong intrinsic and Rashba spin-orbit interactions within the topological insulator phase. Explicit results are provided for a disk-shaped potential well and for the Coulomb center problem.

References

[1]  Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162, doi:10.1103/RevModPhys.81.109.
[2]  Kotov, V.N.; Uchoa, B.; Pereira, V.M.; Guinea, F.; Castro Neto, A.H. Electron-electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 2012, 84, 1067–1125, doi:10.1103/RevModPhys.84.1067.
[3]  Kane, C.L.; Mele, E.J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801:1–226801:4.
[4]  Hasan, M.Z.; Kane, C.L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067, doi:10.1103/RevModPhys.82.3045.
[5]  Huertas-Hernando, D.; Guinea, F.; Brataas, A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 2006, 74, 155426:1–155426:15.
[6]  Min, H.; Hill, J.E.; Sinitsyn, N.A.; Sahu, B.R.; Kleinman, L.; MacDonald, A.H. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 2006, 74, 165310:1–165310:5.
[7]  Yao, Y.; Ye, F.; Qi, X.L.; Zhang, S.C.; Fang, Z. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401(R):1–041401(R):4.
[8]  Weeks, C.; Hu, J.; Alicea, J.; Franz, M.; Wu, R. Engineering a robust quantum spin hall state in graphene via adatom deposition. Phys. Rev. X 2011, 1, 021001:1–021001:15.
[9]  Shevtsov, O.; Carmier, P.; Groth, C.; Waintal, X.; Carpentier, D. Graphene-based heterojunction between two topological insulators. Phys. Rev. X 2012, 2, 031004:1–031004:10.
[10]  Shevtsov, O.; Carmier, P.; Groth, C.; Waintal, X.; Carpentier, D. Tunable thermopower in a graphene-based topological insulator. Phys. Rev. B 2012, 85, 245441:1–245441:7.
[11]  Jiang, H.; Qiao, Z.; Liu, H.; Shi, J.; Niu, Q. Stabilizing topological phases in graphene via random adsorption. Phys. Rev. Lett. 2012, 109, 116803:1–116803:5.
[12]  Bercioux, D.; de Martino, A. Spin-resolved scattering through spin-orbit nanostructures in graphene. Phys. Rev. B 2010, 81, 165410:1–165410:9, doi:10.1103/PhysRevB.81.165410.
[13]  Lenz, L.; Bercioux, D. Dirac-Weyl electrons in a periodic spin-orbit potential. Europhys. Lett. 2011, 96, 27006:1–27006:6.
[14]  Wang, Y.; Brar, V.W.; Shytov, A.V.; Wu, Q.; Regan, W.; Tsai, H.Z.; Zettl, A.; Levitov, L.S.; Crommie, M.F. Mapping dirac quasiparticles near a single coulomb impurity on graphene. Nat. Phys. 2012, 8, 653–657, doi:10.1038/nphys2379.
[15]  Katsnelson, M.I. Nonlinear screening of charge impurities in graphene. Phys. Rev. B 2006, 74, 201401(R):1–201401(R):3.
[16]  Pereira, V.M.; Nilsson, J.; Castro Neto, A.H. Coulomb impurity problem in graphene. Phys. Rev. Lett. 2007, 99, 166802:1–166802:4.
[17]  Shytov, A.V.; Katsnelson, M.I.; Levitov, L.S. Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett. 2007, 99, 236801:1–236801:5.
[18]  Shytov, A.V.; Katsnelson, M.I.; Levitov, L.S. Atomic collapse and quasi-rydberg states in graphene. Phys. Rev. Lett. 2007, 99, 246802:1–246802:5.
[19]  Biswas, R.R.; Sachdev, S.; Son, D.T. Coulomb impurity in graphene. Phys. Rev. B 2007, 76, 205122:1–205122:5.
[20]  Fogler, M.M.; Novikov, D.S.; Shklovskii, B.I. Screening of a hypercritical charge in graphene. Phys. Rev. B 2007, 76, 233402:1–233402:4.
[21]  Novikov, D.S. Elastic scattering theory and transport in graphene. Phys. Rev. B 2007, 76, 245435:1–245435:17.
[22]  Terekhov, I.S.; Milstein, A.I.; Kotov, V.I.; Sushkov, O.P. Screening of coulomb impurities in graphene. Phys. Rev. Lett. 2008, 100, 076803:1–076803:4.
[23]  Pereira, V.M.; Kotov, V.N.; Castro Neto, A.H. Supercriticial coulomb impurities in gapped graphene. Phys. Rev. B 2008, 78, 085101:1–085101:8.
[24]  Gamayun, O.B.; Gorbar, E.V.; Gusynin, V.P. Supercritical coulomb center and excitonic instability in graphene. Phys. Rev. B 2009, 80, 165429:1–165429:14.
[25]  Gamayun, O.B.; Gorbar, E.V.; Gusynin, V.P. Magnetic field driven instability of a charged center in graphene. Phys. Rev. B 2011, 83, 235104:1–235104:9.
[26]  Zhu, J.L.; Sun, S.; Yang, N. Dirac donor states controlled by magnetic field in gapless and gapped graphene. Phys. Rev. B 2012, 85, 035429:1–035429:9.
[27]  Huertas-Hernando, D.; Guinea, F.; Brataas, A. Spin-orbit mediated spin relaxation in graphene. Phys. Rev. Lett. 2009, 103, 146801:1–146801:4.
[28]  Rashba, E.I. Graphene with structure-induced spin-orbit coupling: Spin-polarized states, spin zero modes, and quantum Hall effect. Phys. Rev. B 2009, 79, 161409(R):1–161409(R):4.
[29]  De Martino, A.; Hütten, A.; Egger, R. Landau levels, edge states, and strained magnetic waveguides in graphene monolayers with enhanced spin-orbit interaction. Phys. Rev. B 2011, 84, 155420:1–155420:12.
[30]  Rakyta, P.; Kormanyos, A.; Cserti, J. Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin-orbit coupling. Phys. Rev. B 2010, 82, 113405:1–113405:4.
[31]  Bardarson, J.H.; Titov, M.; Brouwer, P.W. Electrostatic confinement of electrons in an integrable graphene quantum dot. Phys. Rev. Lett. 2009, 102, 226803:1–226803:4.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413