全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

Generation of Light Scattering States in Cholesteric Liquid Crystals by Optically Controlled Boundary Conditions

DOI: 10.3390/cryst3010234

Keywords: photoisomerization, azobenzene, liquid crystal, patterning, texture, stimuli-responsive materials, photoalignment, switchable photonic bandgaps, displays

Full-Text   Cite this paper   Add to My Lib

Abstract:

Circularly polarized light was previously employed to stimulate the reversible and reconfigurable writing of scattering states in cholesteric liquid crystal (CLC) cells constructed with a photosensitive layer. Such dynamic photodriven responses have utility in remotely triggering changes in optical constructs responsive to optical stimulus and applications where complex spatial patterning is required. Writing of scattering regions required the handedness of incoming radiation to match the handedness of the CLC and the reflection bandwidth of the CLC to envelop the wavelength of the incoming radiation. In this paper, the mechanism of transforming the CLC into a light scattering state via the influence of light on the photosensitive alignment layer is detailed. Specifically, the effects of: (i) the polarization state of light on the photosensitive alignment layer; (ii) the exposure time; and (iii) the incidence angle of radiation on domain formation are reported. The photogenerated light-scattering domains are shown to be similar in appearance between crossed polarizers to a defect structure that occurs at a CLC/air interface ( i.e., a free CLC surface). This observation provides strong indication that exposure of the photosensitive alignment layer to the circularly polarized light of appropriate wavelength and handedness generates an out-of-plane orientation leading to a periodic distortion of the original planar structure.

References

[1]  Collings, P.J. Liquid Crystals: Nature’s Delicate Phase of Matter, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2002; pp. 9–10.
[2]  Belyakov, V.A.; Dmitrienko, V.E. Optics of Chiral Liquid Crystals, 1st ed.; Routledge: Harwood, NY, USA, 1989.
[3]  St. John, W.D.; Fritz, W.J.; Lu, Z.J.; Yang, D.-K. Bragg reflection form cholesteric liquid crystals. Phys. Rev. E 1995, 51, 1191–1198, doi:10.1103/PhysRevE.51.1191.
[4]  Sharma, V.; Crne, M.; Park, J.O.; Srinivasarao, M. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science 2009, 325, 449–110, doi:10.1126/science.1172051.
[5]  Vignolini, S.; Rudall, P.J.; Rowland, A.V.; Reed, A.; Moyroud, E.; Faden, R.B.; Baumberg, J.J.; Glover, B.J.; Steiner, U. Pointillist structural color in Pollia fruit. Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715, doi:10.1073/pnas.1210105109.
[6]  Fan, B.; Vartak, S.; Eakin, J.N.; Faris, S.M. Surface anchoring effects on spectral broadening of cholesteric liquid crystal films. J. Appl. Phys. 2008, 104, 023108:1–023108:5.
[7]  Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials: Physics and Applications, 1st ed.; John Wiley and Sons Ltd.: West Sussex, UK, 2008; p. 5.
[8]  Ichimura, K. Photoalignment of Liquid-Crystal Systems. Chem. Rev. 2000, 100, 1847–1873, doi:10.1021/cr980079e.
[9]  Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: Basics and current trends. J. Mater. Chem. 2012, 22, 286–300, doi:10.1039/c1jm13485j.
[10]  Gibbons, W.M.; Shannon, P.J.; Sun, S.-T.; Swetlin, B.J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 1991, 351, 49–50.
[11]  Schadt, M.; Schmitt, K.; Kozinkov, V.; Chigrinov, V. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymer. J. Appl. Phys. 1992, 31, 2155–2164.
[12]  Marusii, T.Y.; Reznikov, Y.A. Photosensitive orientants for liquid crystal alignment. Mol. Mater. 1993, 3, 161–168.
[13]  Sung, S.-J.; Cho, K.-Y.; Park, J.-K. Photo-induced liquid crystal alignment of poly(vinyl cinnamate) and fluorinated polyimide blends. Mater. Sci. Eng. C 2004, 24, 181–184, doi:10.1016/j.msec.2003.09.046.
[14]  Hah, H.; Sung, S.-J.; Park, J.-K. Ultraviolet embossed alignment layer for flexible liquid crystal display. Appl. Phys. Lett. 2007, 90, 063508:1–063508:3.
[15]  Hah, H.; Sung, H.-J.; Cho, K.Y.; Park, J.-K. Molecular orientation of liquid crystal on polymer blends of coumarin and naphthalenic polyimide. Polym. Bull. 2008, 61, 383–390, doi:10.1007/s00289-008-0955-1.
[16]  Ichimura, K.; Akiyama, H.; Ishizuki, N.; Kawanishi, Y. Command surfaces, 6 Azimuthal orientation of liquid crystals photo-controlled by an azobenzene pendent polymer. Makromol. Chem. Rapid Commun. 1993, 14, 813–817, doi:10.1002/marc.1993.030141213.
[17]  Zhong, Z.-X.; Li, X.; Lee, S.H.; Lee, M.-H. Liquid crystal photoalignment material based on chloromethylated polyimide. Appl. Phys. Lett. 2004, 85, 2520–2523, doi:10.1063/1.1797560.
[18]  Kurochkin, O.; Ouskova, E.; Reznikov, Y.; Kurioz, Y.; Tereshchenko, O.; Vovk, R.; Kim, D.-H.; Park, S.-K.; Kwon, S.-B. Light-Controlled Alignment of Cholesteric Liquid Crystals on Photoresponsive Materials. Mol. Cryst. Liq. Cryst. 2006, 453, 333–341, doi:10.1080/15421400600653878.
[19]  Nersisyan, S.R.; Tabiryan, N.V. Polarization imaging components based on patterned photoalignment. Mol. Cryst. Liq. Cryst. 2008, 489, 156–168.
[20]  Lin, T.-H.; Huang, Y.; Zhou, Y.; Fuh, A.Y.G.; Wu, S.-T. Photo-patterning micro-mirror devices using azo dye-doped cholesteric liquid crystals. Opt. Express 2006, 14, 4479–4485, doi:10.1364/OE.14.004479.
[21]  Tabiryan, N.V.; Nersisyan, S.R.; Steeves, D.M.; Kimball, B.R. The Promise of Diffractive Waveplates. Opt. Photon. News 2010, 21, 41–45, doi:10.1364/OPN.21.12.000041.
[22]  Vernon, J.P.; Hrozhyk, U.A.; Serak, S.V.; Tondiglia, V.P.; White, T.J.; Tabiryan, N.V.; Bunning, T.J. Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells. Adv. Opt. Mater. 2013, 1, 84–91.
[23]  Helfrich, W. Deformation of Cholesteric Liquid Crystals with Low Threshold Voltage. Appl. Phys. Lett. 1970, 17, 531–532, doi:10.1063/1.1653297.
[24]  Gerritsma, C.J.; van Zanten, P. Periodic Perturbations in the Cholesteric Plane Texture. Phys. Lett. A 1971, 37, 47–48, doi:10.1016/0375-9601(71)90325-2.
[25]  Hervet, H.; Hurault, J.P.; Rondelez, F. Static one-dimensional distortions in cholesteric liquid crystals. Phys. Rev. A 1973, 8, 3055–3064, doi:10.1103/PhysRevA.8.3055.
[26]  Senyuk, B.I.; Smalyukh, I.I.; Lavrentovich, O.D. Undulations of lamellar liquid crystals with finite surface anchoring near and well above the threshold. Phys. Rev. E 2006, 74, 011712:1–011712:13.
[27]  Saupe, A. Disclinations and properties of the directorfield in nematic and cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 1973, 21, 211–238, doi:10.1080/15421407308083320.
[28]  Bunning, T.J.; Vezie, D.L.; Lloyd, P.F.; Haaland, P.D.; Thomas, E.L.; Adams, W.W. Cholesteric Liquid Crystals image contrast in the TEM. Liq. Cryst. 1994, 16, 769–781, doi:10.1080/02678299408027849.
[29]  Meister, R.; Dumoulin, H.; Halle, M.-A.; Pieranski, P. Structure of the cholesteric focal conic domains at the free surface. Phys. Rev. E 1996, 54, 3771–3782, doi:10.1103/PhysRevE.54.3771.
[30]  Meister, R.; Dumoulin, H.; Halle, M.-A.; Pieranski, P. The Anchoring of a Cholesteric Liquid Crystal at the Free Surface. J. Phys. II Fr. 1996, 6, 827–844.
[31]  Yager, K.G.; Barrett, C.J. Azobenzene Polymers for Photonic Applications. In Smart Light-Responsive Materials, 1st; Zhao, Y., Ikeda, T., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–46.
[32]  Markave, E.; Gustina, D.; Matixova, G.; Kaula, I.; Muzikante, I.; Rutkis, M.; Gerca, L. Reversible trans/cis photoisomerization in Langmuir-Blodgett multilayers from polyfunctional azobenzenes. Supramol. Sci. 1997, 4, 369–374, doi:10.1016/S0968-5677(97)00018-7.
[33]  Menzel, H.; Weichart, B.; Schmidt, A.; Paul, S.; Knoll, W.; Stumpe, J.; Fischer, T. Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in Langmuir-Blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir 1994, 10, 1926–1933, doi:10.1021/la00018a052.
[34]  Cojocariu, C.; Rochon, R. Light-induced motions in azobenzene-containing polymers. Pure Appl. Chem. 2004, 76, 1479–1497, doi:10.1351/pac200476071479.
[35]  Ruslim, C.; Ichimura, K. Photocontrolled Alignment of Chiral Nematic Liquid Crystals. Adv. Mater. 2001, 13, 641–644, doi:10.1002/1521-4095(200105)13:9<641::AID-ADMA641>3.0.CO;2-B.
[36]  Nersisyan, S.R.; Tabiryan, N.V.; Steeves, D.M.; Kimball, B.R. Characterization of optically imprinted polarization gratings. Appl. Opt. 2009, 48, 4062–4067, doi:10.1364/AO.48.004062.
[37]  Serak, S.; Tabiryan, N. Microwatt Power Optically Controlled Spatial Solitons in Azobenzene Liquid Crystals. Proc. SPIE 2006, 6332, 63320Y:1–63320Y:13.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413