Glycine Betaine Recognition through Cation?π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-pyrogallol[4]arene and C-Ethyl-resorcin[4]arene as Receptors
The glycine betaine (betaine), interacts with several types of proteins with diverse structures in vivo, and in the contact regions, the aromatic rings of protein residues are frequently found beside the trimethylammonium group of betaine, implying the importance of the cation?π interactions in recognition of this molecule. The crystal structures determined by X-ray crystallography of the complexes of betaine and C-ethyl-pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT) and betaine and C-ethyl-resorcin[4]arene (resorcinol cyclic tetramer: RCT) mimic the conformations of betaine and protein complexes and show that the clathrate conformations are retained by the cation?π interactions. The difference of the conformation feature of betaine in the Protein Data Bank and in the Cambridge Structural Database was found by chance during the research and analyzed with the torsion angles.
References
[1]
Landfald, B.; Str?m, A.R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 1986, 165, 849–855.
[2]
Ebisuzaki, K.; Williams, J.N. Preparation and partial purification of soluble choline dehydrogenase from liver mitochondria. Biochem. J. 1955, 60, 644–646.
[3]
Tsuge, H.; Nakano, Y.; Onishi, H.; Futamura, Y.; Ohashi, K. A novel purification and some properties of rat liver mitochondrial choline dehydrogenase. Biochim. Biophys. Acta 1980, 614, 274–284, doi:10.1016/0005-2744(80)90217-X.
[4]
Finkelstein, J.D.; Martin, J.J. Methionine metabolism in mammals. J. Biol. Chem. 1984, 259, 9508–9513.
[5]
Finkelstein, J.D.; Kyle, W.E.; Harris, B.J. Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch. Biochem. Biophys. 1971, 146, 84–92, doi:10.1016/S0003-9861(71)80044-9.
[6]
McKeever, M.P.; Weir, D.G.; Molloy, A.; Scott, J.M. Betaine-homocysteine methyltransferase: Organ distribution in man, pig and rat and subcellular distribution in the rat. Clin. Sci. 1991, 81, 551–556.
[7]
DiBello, P.M.; Dayal, S.; Kaveti, S.; Zhang, D.; Kinter, M.; Lentz, S.R.; Jacobsen, D.W. The nutrigenetics of hyperhomocysteinemia. Mol. Cell. Proteomics 2010, 9, 471–485, doi:10.1074/mcp.M900406-MCP200.
[8]
Schiefner, A.; Breed, J.; B?sser, L.; Kneip, S.; Gade, J.; Holtmann, G.; Diederichs, K.; Welte, W.; Bremer, E. Cation-π interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J. Biol. Chem. 2004, 279, 5588–5596.
[9]
Trikha, J.; Theil, E.C.; Allewell, N.M. High resolution crystal structures of amphibian red-cell l ferritin: Potential roles for structural plasticity and solvation in function. J. Mol. Biol. 1995, 248, 949–967, doi:10.1006/jmbi.1995.0274.
[10]
Schiefner, A.; Holtmann, G.; Diederichs, K.; Welte, W.; Bremer, E. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Biol. Chem. 2004, 279, 48270–48281.
[11]
Hitomi, K.; Oyama, T.; Han, S.; Arvai, A.S.; Getzoff, E.D. Tetrameric architecture of the circadian clock protein KaiB. J. Biol. Chem. 2005, 280, 19127–19135.
[12]
Horn, C.; Sohn-B?sser, L.; Breed, J.; Welte, W.; Schmitt, L.; Bremer, E. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J. Mol. Biol. 2006, 357, 592–606, doi:10.1016/j.jmb.2005.12.085.
[13]
Wolters, J.C.; Berntsson, R.P.-A.; Gul, N.; Karasawa, A.; Thunnissen, A.-M.W.H.; Slotboom, D.-J.; Poolman, B. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS One 2010, 5, doi:10.1371/journal.pone.0010361.
[14]
Tschapek, B.; Pittelkow, M.; Sohn-B?sser, L.; Holtmann, G.; Smits, S.H.J.; Gohlke, H.; Bremer, E.; Schmitt, L. Arg149 is involved in switching the low affinity, open state of the binding protein AfProX into its high affinity, closed state. J. Mol. Biol. 2011, 411, 36–52, doi:10.1016/j.jmb.2011.05.039.
[15]
Du, Y.; Shi, W.-W.; He, Y.-X.; Yang, Y.-H.; Zhou, C.-Z.; Chen, Y. Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC. Biochem. J. 2011, 436, 283–289, doi:10.1042/BJ20102097.
[16]
Marshall, H.; Venkat, M.; Seng, N.S.; Cahn, J.; Juers, D.H. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography. Acta Cryst. 2012, D68, 69–81.
[17]
Ressel, S.; van Scheltinga, A.C.; Vonrhein, C.; Ott, V.; Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 2009, 458, 47–52.
[18]
Gardberg, A.; Fox, D.; Staker, B.; Stewart, L. Crystal Structure Of Glycine Betaine, L-Proline ABC Transporter, Glycine/Betaine/L-Proline-Binding Protein (ProX) from Borrelia Burgdorferi; PDB (Protein Data Bank): Upton, NY, USA, 2013. No. 3TMG.
[19]
Tan, K.; Shackelford, G.; Joachimiak, A. The Crystal Structure of A Possible Acetyltransferase Clostridium Difficile 630; PDB: Upton, NY, USA, 2013. No. 3DSB.
[20]
Ressl, S.; Scheltinga, A.C.T.V.; Vonrhein, C.; Ott, V.; Ziegler, C. Crystal Structure of the Sodium-Coupled Glycine Glutamicum with Bond Substrate; PDB: Upton, NY, USA, 2013. No. 2WIT.
[21]
Fujisawa, I.; Takeuchi, D.; Kato, R.; Murayama, K.; Aoki, K. Crystal structures of resorcin[4]arene and tetramethylated resorcin[4]arene complexes incorporating L-carnitine. Bull. Chem. Soc. Jpn. 2011, 84, 1133–1135, doi:10.1246/bcsj.20110166.
[22]
Fujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K. Crystal structure of an L-carnitine complex with pyrogallol[4]arene. J. Phys. Conf. Ser. 2012, 352, doi:10.1088/1742-6596/352/1/012043.
[23]
Murayama, K.; Aoki, K. Molecular recognition involving multiple cation?π interactions: The inclusion of the acetylcholine trimethylammonium moiety in resorcin[4]arene. Chem. Commun. 1997, 1, 119–120, doi:10.1039/a607131g.
[24]
Luostarinen, M.; ?hman, A.; Nissinen, M.; Rissanen, K. Ethyl pyrogall[6]arene and pyrogall[4]arene: Synthesis, structural analysis and derivatization. Supramol. Chem. 2004, 16, 505–512, doi:10.1080/10610270410001729748.
[25]
Murayama, K.; Aoki, K. Resorcin[4]arene dimer linked by eight water molecules and incorporating a tetraethylammonium ion: guest-driven capsule formation via cation-π interactions. Chem. Commun. 1998, 5, 607–608, doi:10.1039/a800340h.
[26]
Mansikkam?ki, H.; Nissinen, M.; Schalley, C.A.; Rissanen, K. Self-assembling resorcinarene capsules: Solid and gas phase studies on encapsulation of small alkyl ammonium cations. New J. Chem. 2003, 27, 88–97, doi:10.1039/b207875a.
[27]
M?kinen, M.; Vainiotalo, P.; Nissinen, M.; Rissanen, K. Ammonium ion mediated resorcarene capsules: ESI-FTICRMS study on gas-phase structure and ammonium ion affinity of tetraethyl resorcarene and its per-methylated derivative. J. Am. Soc. Mass Spectrom. 2003, 14, 143–151.
[28]
Aoyama, Y.; Tanaka, Y.; Sugahara, S. Molecular recognition. 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle. J. Am. Chem. Soc. 1989, 111, 5397–5404, doi:10.1021/ja00196a052.
[29]
Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
[30]
Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. Release of software (Yadokari-XG 2009) for crystal structure analyses. J. Cryst. Soc. Jpn. 2009, 51, 218–224, doi:10.5940/jcrsj.51.218.
[31]
Farrugia, L.J. ORTEP-3 for windows—A version of ORTEP-III with a graphical user interface (GUI). J. Appl. Cryst. 1997, 30, 565, doi:10.1107/S0021889897003117.
[32]
CCDC CIF Depository Request Form for data published from 1994. Available online: http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 7 April 2013).