全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda)

DOI: 10.3390/biom3010018

Keywords: biomineralization, calcification, calcium storage, carbohydrates, crayfish, Crustacea, gastrolith, organic matrix, proteoglycans

Full-Text   Cite this paper   Add to My Lib

Abstract:

Crustaceans have to cyclically replace their rigid exoskeleton in order to grow. Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca): three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components.

References

[1]  Graf, F. Les sources de calcium pour les crustacés venant de muer. Arch. Zool. Exp. Gen. 1978, 119, 143–161.
[2]  Greenaway, P. Calcium balance and molting in the Crustacea. Biol. Rev. 1985, 60, 425–454, doi:10.1111/j.1469-185X.1985.tb00424.x.
[3]  Wheatly, M.G. Calcium homeostasis in Crustacea: the evolving role of branchial, renal, digestive and hypodermal epithelia. J. Exp. Zool. 1999, 283, 620–64, doi:10.1002/(SICI)1097-010X(19990601)283:7<620::AID-JEZ2>3.0.CO;2-3.
[4]  Luquet, G.; Marin, F. Biomineralization in crustaceans: Storage strategies. C. R. Palevol. 2004, 3, 515–534, doi:10.1016/j.crpv.2004.07.015.
[5]  Luquet, G. Biomineralizations: insights and prospects from crustaceans. Zookeys 2012, 176, 103–121, doi:10.3897/zookeys.176.2318.
[6]  Travis, D.F. The deposition of skeletal structures in the crustacea. I. The histology of the gastrolith skeletal tissue complex and the gastrolith in the crayfish, Orconectes (Cambarus) virilis Hagen - Decapoda. Biol. Bull. 1960, 18, 137–149, doi:10.2307/1539064.
[7]  Travis, D.F. Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann. N. Y. Acad. Sci. 1963, 109, 177–245, doi:10.1111/j.1749-6632.1963.tb13467.x.
[8]  Hikida, T.; Nagasawa, H.; Kogure, T. Characterization of amorphous calcium carbonate in the gastrolith of crayfish, Procambarus clarkii. In Biomineralization: formation, diversity, evolution and application; Kobayashi, I., Ozawa, H., Eds.; Tokai University Press: Kanagawa, Japan, 2003; pp. 81–84.
[9]  Shechter, A.; Berman, A.; Singer, A.; Freiman, A.; Grinstein, M.; Erez, J.; Aflalo, E.D.; Sagi, A. Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus. Biol. Bull. 2008, 214, 122–134, doi:10.2307/25066669.
[10]  Scott, D.; Duncan, K.W. The function of freshwater crayfish and their occurrence in perch, trout and shag stomachs. New Zeal. J. Mar. Fresh. Res. 1967, 1, 99–104, doi:10.1080/00288330.1967.9515196.
[11]  Mann, S. Mineralization in biological systems. Struct. Bond. 1983, 54, 125–174, doi:10.1007/BFb0111320.
[12]  Lowenstam, H.A.; Weiner, S. On biomineralization; Oxford University Press: NewYork, USA, 1989; p. 324.
[13]  Bentov, S.; Weil, S.; Glazer, L.; Sagi, A.; Berman, A. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J. Struct. Biol. 2010, 17, 207–215.
[14]  Ishii, K.; Yanagisawa, T.; Nagasawa, H. Characterization of a matrix protein in the gastroliths of the crayfish Procambarus clarkii. Biosci. Biotechnol. Biochem. 1996, 60, 1479–1482, doi:10.1271/bbb.60.1479.
[15]  Ishii, K.; Tsutsui, N.; Watanabe, T.; Yanagisawa, T.; Nagasawa, H. Solubilization and chemical characterization of an insoluble matrix protein in the gastroliths of a crayfish, Procambarus clarkii. Biosci. Biotech. Biochem. 1998, 62, 291–296, doi:10.1271/bbb.62.291.
[16]  Tsutsui, N.; Ishii, K.; Takagi, Y.; Watanabe, T.; Nagasawa., H. Cloning and expression of a cDNA encoding an insoluble matrix protein in the gastroliths of a crayfish, Procambarus clarkii. Zool. Sci. 1999, 16, 619–628, doi:10.2108/zsj.16.619.
[17]  Takagi, Y.; Ishii, K.; Ozaki, N.; Nagasawa, H. Immunolocalization of gastrolith matrix protein (GAMP) in the gastroliths and exoskeleton of crayfish, Procambarus clarkii. Zool. Sci. 2000, 17, 179–184, doi:10.2108/zsj.17.179.
[18]  Shechter, A.; Glazer, L.; Cheled, S.; Mor, E.; Weil, S.; Berman, A.; Bentov, S.; Aflalo, E.D.; Khalaila, I.; Sagi, A. A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix. Proc. Natl. Acad. Sci. USA 2008, 105, 7129–7134.
[19]  Glazer, L.; Shechter, A.; Tom, M.; Yudkovski, Y.; Well, S.; Aflalo, E.D.; Pamuru, R.R.; Khalaila, I.; Bentov, S.; Berman, A.; Sagi, A. A protein involved in the assembly of an extracellular calcium storage matrix. J. Biol. Chem. 2010, 285, 12831–12839.
[20]  Luquet, G.; Le Roy, N.; Zanella-Cléon, I.; Becchi, M.; Bucarey, S.; Fernandez, M.S.; Arias, J.L.; Guichard, N.; Marie, B.; Marin, F. Characterization of crustacyanin-A2 subunit as a component of the organic matrix of gastroliths from the crayfish Cherax quadricarinatus. In Structure-Property Relationships in Biomineralized and Biomimetic Composites; Kisalius, D., Estroff, L., Landis, W., Zavattieri, P., Gupta, H.S., Eds.; Warrendale, PA, USA. , , 69–75..
[21]  Yudkovski, Y.; Glazer, L.; Shechter, A.; Reinhardt, R.; Chalifa-Caspi, V.; Sagi, A.; Tom, M. Multi-transcript expression patterns in the gastrolith disk and the hypodermis of the crayfish Cherax quadricarinatus at premolt. Comp. Biochem. Physiol. D 2010, 5, 171–177.
[22]  Glazer, L.; Sagi, A. On the involvement of proteins in the assembly of the crayfish gastrolith extracellular matrix. Invert. Rep. Dev. 2012, 56, 57–65, doi:10.1080/07924259.2011.588010.
[23]  Luquet, G.; Fernandez, M.S.; Navarrete, M.J.; Arias, J.L.; Guichard, N.; Marie, B.; Marin, F. Biochemical characterization of the soluble organic matrix of gastroliths from decapods. In Biomineralization, from Paleontology to Materials Science; Arias, J.L., Fernandez, M.S., Eds.; Editorial Universitaria: Santiago, Chile, 2007; pp. 319–328.
[24]  Akiva-Tal, A.; Kabaya, S.; Balazs, Y.S.; Glazer, L.; Berman, A.; Sagi, A.; Schmidt, A. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths. Proc. Natl. Acad. Sci. USA 2011, 108, 14763–14768.
[25]  Sato, A.; Nagasaka, S.; Fuhirata, K.; Nagata, S.; Arai, S.; Saruwatari, K.; Kogure, T.; Sakuda, S.; Nagasawa, H. Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans. Nat. Chem. Biol. 2011, 7, 197–199, doi:10.1038/nchembio.532.
[26]  Arias, J.L.; Fernandez, M.S. Biomimetic processes through the study of mineralized shells. Mater. Charact. 2003, 50, 189–195, doi:10.1016/S1044-5803(03)00088-3.
[27]  Rodríguez-Navarro, A.; Cabral de Melo, C.; Batista, N.; Morimoto, N.; Alvarez-Lloret, P.; Ortega-Huertas, M.; Fuenzalida, V.M.; Arias, J.I.; Wiff, J.P.; Arias, J.L. Microstructure and crystallographic-texture of giant barnacle (Austromegabalanus psittacus) shell. J. Struct. Biol. 2006, 156, 355–362, doi:10.1016/j.jsb.2006.04.009.
[28]  Fernandez, M.S.; Bustos, C.; Luquet, G.; Saez, D.; Neira-Carrillo, A.; Corneillat, M.; Alcaraz, G.; Arias, J.L. Proteoglycan occurrence in gastrolith of the crayfish Cherax quadricarinatus (Crustacea, Malacostraca, Decapoda). J. Crust. Biol. 2012, 32, 802–815, doi:10.1163/193724012X649804.
[29]  Westbroek, P.; de Jong, E.W.; Dam, W.; Bosch, L. Soluble intracrystalline polysaccharides from coccoliths of Coccolithus huxleyi (Lohmann) Kamptner (I). Calcif. Tissue Res. 1973, 12, 227–238, doi:10.1007/BF02013737.
[30]  de Jong, E.W.; Bosch, L.; Westbroek, P. Isolation and characterization of a Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Eur. J. Biochem. 1976, 70, 611–621, doi:10.1111/j.1432-1033.1976.tb11052.x.
[31]  Borman, A.H.; de Jong, E.W.; Huizinga, M.; Kok, D.J.; Westbroek, P.; Bosch, L. The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. Eur. J. Biochem. 1982, 129, 179–183, doi:10.1111/j.1432-1033.1982.tb07037.x.
[32]  Yang, M.; Stipp, S.L.S.; Harding, J. Biological control on calcite crystallization by polysaccharides. Cryst. Growth Des. 2008, 8, 4066–4074, doi:10.1021/cg800508t.
[33]  Kingsley, R.J.; Watabe, N. Analysis of proteinaceous components of the organic matrices of spicules from the gorgonian Leptogorgia virgulata. Comp. Biochem. Physiol. B 1983, 76, 443–447, doi:10.1016/0305-0491(83)90273-0.
[34]  Cuif, J.P.; Gautret, P. Glucides et protéines de la matrice soluble des biocristaux de Scléractinaires Acroporidés. C. R. Acad. Sci. Paris 1995, 320, 273–278.
[35]  Collins, M.J.; Muyzer, G.; Curry, G.B.; Sandberg, P.; Westbroek, P. Macromolecules in brachiopod shells: characterization and diagenesis. Lethaia 1991, 24, 387–97, doi:10.1111/j.1502-3931.1991.tb01491.x.
[36]  Gaspard, D.; Marin, F.; Guichard, N.; Morel, S.; Alcaraz, G.; Luquet, G. Shell matrices of recent Rhynchonelliform Brachiopods: microstructures and glycosylation studies. R. Soc. Edinburgh Trans. 2008, 98, 415–424.
[37]  Benson, S.C.; Benson, N.C.; Wilt, F. The organic matrix of the skeletal spicule of sea urchin embryos. J. Cell. Biol. 1986, 102, 1878–7886, doi:10.1083/jcb.102.5.1878.
[38]  Albeck, S.; Addadi, L.; Weiner, S. Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connect. Tissue Res. 1996, 35, 365–370, doi:10.3109/03008209609029213.
[39]  Albeck, S.; Weiner, S.; Addadi, L. Polysaccharides of intracrystallline glycoproteins modulate calcite crystal growth in vitro. Chem. Eur. J. 1996, 2, 278–284, doi:10.1002/chem.19960020308.
[40]  Wheeler, A.P.; George, J.W.; Evans, C.A. Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 1981, 212, 1397–1398.
[41]  Marie, B.; Luquet, G.; Pais De Barros, J.P.; Guichard, N.; Morel, S.; Alcaraz, G.; Bollache, L.; Marin, F. The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in nacre mineralization. FEBS J. 2007, 274, 2933–2945, doi:10.1111/j.1742-4658.2007.05825.x.
[42]  Marie, B.; Marin, F.; Marie, A.; Bédouet, L.; Dubost, L.; Alcaraz, G.; Milet, C.; Luquet, G. Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. ChemBioChem. 2009, 26, 1495–1506.
[43]  Marie, B.; Zanella-Cléon, I.; Corneillat, M.; Becchi, M.; Alcaraz, G.; Plasseraud, L.; Luquet, G.; Marin, F. Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphal. FEBS J. 2011, 278, 2117–2130, doi:10.1111/j.1742-4658.2011.08129.x.
[44]  Pavat, C.; Zanella-Cléon, I.; Becchi, M.; Medakovic, D.; Luquet, G.; Guichard, N.; Alcaraz, G.; Dommergues, J-L.; Serpentini, A.; Lebel, J.-M.; Marin, F. The shell matrix of the pulmonate land snail Helix aspersa maxima. Comp. Biochem. Physiol. B 2012, 161, 303–314, doi:10.1016/j.cbpb.2011.12.003.
[45]  Addadi, L.; Moradian, J.; Shay, E.; Maroudas, M.G.; Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA 1987, 84, 2732–2736, doi:10.1073/pnas.84.9.2732.
[46]  Zhong, C.; Chu, C.C. Acid polysaccharide-induced amorphous calcium carbonate (ACC) films: colloidal nanoparticle self-organization process. Langmuir 2009, 25, 3045–3049, doi:10.1021/la803541m.
[47]  Dillaman, R.; Hequembourg, S.; Gay, M. Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J. Morphol. 2005, 263, 356–374, doi:10.1002/jmor.10311.
[48]  Romano, P.; Fabritius, H.; Raabe, D. The exoskeleton of the lobster, Homarus americanus, as an example of a smart anisotropic biological material. Acta Biomater. 2007, 3, 301–309, doi:10.1016/j.actbio.2006.10.003.
[49]  Soejoko, D.S.; Tjia, M.O. Infrared spectroscopy and X-ray diffraction study on the morphological variations of carbonate and phosphate compounds in giant prawn (Macrobrachium rosenbergii) skeletons during its moulting period. J. Mater. Sci. 2003, 38, 2087–2093, doi:10.1023/A:1023566227836.
[50]  Dauphin, Y. Infrared spectra and elemental composition in recent biogenic calcites: Relationships between the ν4 bandwavelength and Sr and Mg concentrations. Appl. Spectrosc. 1997, 51, 253–258, doi:10.1366/0003702971940152.
[51]  Dauphin, Y. Infrared spectra and elemental composition in recent carbonate skeletons: Relationships between the ν2 band wavenumber and Sr and Mg concentrations. Appl. Spectrosc. 1999, 53, 184–190, doi:10.1366/0003702991946307.
[52]  Auzoux-Bordenave, S.; Badou, A.; Gaume, B.; Berland, S.; Helléouet, M.-N.; Milet, C.; Huchette, S. Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J. Struct. Biol. 2010, 171, 277–290, doi:10.1016/j.jsb.2010.05.012.
[53]  Günther, C.; Becker, A.; Wolf, G.; Epple, M. In vitro synthesis and structural characterization of Amorphous Calcium Carbonate. Z. Anorg. Allg. Chem. 2005, 631, 2830–2835, doi:10.1002/zaac.200500164.
[54]  Nebel, H.; Neumann, M.; Mayer, C.; Epple, M. On the structure of Amorphous Calcium Carbonate - A detailed study by solid-state NMR spectroscopy. Inorg. Chem. 2008, 47, 7874–7879, doi:10.1021/ic8007409.
[55]  Senorale-Pose, M.; Chalar, C.; Dauphin, Y.; Massard, P.; Pradel, P.; Marin, M. Monohydrocalcite in calcareous corpuscles of Mesocestoides corti. Exp. Parasitol. 2008, 118, 54–58, doi:10.1016/j.exppara.2007.06.011.
[56]  Raz, S.; Testenière, O.; Hecker, A.; Weiner, S.; Luquet., G. Stable amorphous calcium carbonate is the main components of the calcium storage structures of the crustacean Orchestia cavimana. Biol. Bull. 2002, 203, 269–274, doi:10.2307/1543569.
[57]  Funderburgh, J.L. Keratan sulfate: structure, biosynthesis, and function. Glycobiology 2000, 10, 951–958, doi:10.1093/glycob/10.10.951.
[58]  Arias, J.L.; Fernandez, M.S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev. 2008, 108, 4475–4482, doi:10.1021/cr078269p.
[59]  Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its role in biomineralization. Adv. Mater. 2003, 15, 959–970, doi:10.1002/adma.200300381.
[60]  Aizenberg, J.; Lambert, G.; Addadi, L.; Weiner, S. Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv. Mater. 1996, 8, 222–226, doi:10.1002/adma.19960080307.
[61]  Aizenberg, J.; Lambert, G.; Weiner, S.; Addadi, L. Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J. Amer. Chem. Soc. 2002, 124, 32–39, doi:10.1021/ja016990l.
[62]  Ajikumar, P.K.; Wong, L.G.; Subramanyam, G.; Lakshminarayanan, R.; Valiyaveettil, S. Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Cryst. Growth Des. 2005, 5, 1129–1134, doi:10.1021/cg049606f.
[63]  Al-Sawalmih, A.; Li, C.; Siegel, S.; Fratzl, P.; Paris, O. On the stability of amorphous minerals in lobster cuticle. Adv. Mater. 2009, 21, 391–400, doi:10.1002/adma.200801219.
[64]  Loste, E.; Wilson, R.W.; Seshadri, R.; Meldrum, F. The role of magnesium in stabilizing amorphous calcium carbonate and controlling calcite morphologies. J. Cryst. Growth 2003, 254, 206–2178, doi:10.1016/S0022-0248(03)01153-9.
[65]  Liu, Y.; Cui, Y.; Guo, R. Amphiphilic phosphoprotein-controlled formation of amorphous calcium carbonate with hierarchical superstructure. Langmuir 2012, 28, 6097–6105.
[66]  Raz, S.; Weiner, S.; Addadi, L. Formation of high-magnesian calcites via an amorphous precursor phase: possible biological implications. Adv. Mater. 2000, 12, 38–42, doi:10.1002/(SICI)1521-4095(200001)12:1<38::AID-ADMA38>3.0.CO;2-I.
[67]  Raz, S.; Hamilton, P.C.; Wilt, F.H.; Weiner, S.; Addadi, L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater. 2003, 13, 480–486, doi:10.1002/adfm.200304285.
[68]  Fr?hlich, F.; Gendron-Badou, A. La spectroscopie infrarourge, un outil polyvalent. In Géologie de la Préhistoire; Miskovsky, J.C., Ed.; AEEGP éditeur: Paris, France, 2002; pp. 662–677.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413