全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Single Nucleotide Polymorphisms Associated with MicroRNA Regulation

DOI: 10.3390/biom3020287

Keywords: microRNA, single nucleotide polymorphism, bioinformatics, natural selection, expression phenotype, database

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since the discovery of microRNA (miRNA), the polymorphisms that affect miRNA regulation had been extensively investigated by many independent studies. Recently, researchers utilized bioinformatics and statistical approaches for genome-wide analysis on the human polymorphisms that reside in the miRNA genes, targets, and/or genes involved in miRNA processing. In this review, we will give an overview about the important findings of these studies from three perspectives: architecture of the polymorphisms within miRNAs or their targets, potential functional consequences of the polymorphisms on miRNA processing or targeting, and the associations of the polymorphisms with miRNA or target gene expression. The results of the previous studies demonstrated the signatures of natural selections on the miRNA genes and their targets, and proposed a collection of potentially functional, expression-associated, and/or positively selected polymorphisms that are promising for further investigations. In the meantime, a few useful resources about the polymorphic miRNA regulation have been developed and the different features of these databases were discussed in this review. Though recent research had benefited from these comprehensive studies and resources, there were still gaps in our knowledge about the polymorphisms involved in miRNA regulation, and future investigations were expected to address these questions.

References

[1]  Bartel, D.P. Micrornas: Genomics, biogenesis, mechanism, and functi. Cell 2004, 116, 281–297, doi:10.1016/S0092-8674(04)00045-5.
[2]  Ambros, V. The functions of animal micrornas. Nature 2004, 431, 350–355, doi:10.1038/nature02871.
[3]  Kozomara, A.; Griffiths-Jones, S. Mirbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157, doi:10.1093/nar/gkq1027.
[4]  Ke, X.S.; Liu, C.M.; Liu, D.P.; Liang, C.C. Micrornas: Key participants in gene regulatory networks. Curr. Opin. Chem. Biol. 2003, 7, 516–523, doi:10.1016/S1367-5931(03)00075-9.
[5]  Jazdzewski, K.; Murray, E.L.; Franssila, K.; Jarzab, B.; Schoenberg, D.R.; de la Chapelle, A. Common snp in pre-mir-146a decreases mature mir expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 2008, 105, 7269–7274.
[6]  Sethupathy, P.; Collins, F.S. Microrna target site polymorphisms and human disease. Trends Genet. 2008, 24, 489–497, doi:10.1016/j.tig.2008.07.004.
[7]  Hill, D.A.; Ivanovich, J.; Priest, J.R.; Gurnett, C.A.; Dehner, L.P.; Desruisseau, D.; Jarzembowski, J.A.; Wikenheiser-Brokamp, K.A.; Suarez, B.K.; Whelan, A.J.; et al. Dicer1 mutations in familial pleuropulmonary blastoma. Science 2009, 325, 965, doi:10.1126/science.1174334.
[8]  Hu, Z.; Bruno, A.E. The influence of 3'utrs on microrna function inferred from human snp data. Comp. Funct. Genomics 2011, 2011, 910769.
[9]  Chen, K.; Rajewsky, N. Natural selection on human microrna binding sites inferred from snp data. Nat. Genet. 2006, 38, 1452–1456, doi:10.1038/ng1910.
[10]  Saunders, M.A.; Liang, H.; Li, W.H. Human polymorphism at micrornas and microrna target sites. Proc. Natl. Acad. Sci. USA 2007, 104, 3300–3305, doi:10.1073/pnas.0611347104.
[11]  Yu, Z.; Li, Z.; Jolicoeur, N.; Zhang, L.; Fortin, Y.; Wang, E.; Wu, M.; Shen, S.H. Aberrant allele frequencies of the snps located in microrna target sites are potentially associated with human cancers. Nucleic Acids Res. 2007, 35, 4535–4541, doi:10.1093/nar/gkm480.
[12]  Richardson, K.; Lai, C.Q.; Parnell, L.D.; Lee, Y.C.; Ordovas, J.M. A genome-wide survey for snps altering microrna seed sites identifies functional candidates in gwas. BMC Genomics 2011, 12, 504, doi:10.1186/1471-2164-12-504.
[13]  Gong, J.; Tong, Y.; Zhang, H.M.; Wang, K.; Hu, T.; Shan, G.; Sun, J.; Guo, A.Y. Genome-wide identification of snps in microrna genes and the snp effects on microrna target binding and biogenesis. Hum. Mutat. 2012, 33, 254–263, doi:10.1002/humu.21641.
[14]  Lu, M.; Zhang, Q.; Deng, M.; Miao, J.; Guo, Y.; Gao, W.; Cui, Q. An analysis of human microrna and disease associations. PLoS One 2008, 3, e3420.
[15]  Krek, A.; Grun, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial microrna target predictions. Nat. Genet. 2005, 37, 495–500, doi:10.1038/ng1536.
[16]  Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005, 120, 15–20, doi:10.1016/j.cell.2004.12.035.
[17]  Iwai, N.; Naraba, H. Polymorphisms in human pre-mirnas. Biochem. Biophys. Res. Commun. 2005, 331, 1439–1444, doi:10.1016/j.bbrc.2005.04.051.
[18]  Duan, S.; Mi, S.; Zhang, W.; Dolan, M.E. Comprehensive analysis of the impact of snps and cnvs on human micrornas and their regulatory genes. RNA Biol. 2009, 6, 412–425, doi:10.4161/rna.6.4.8830.
[19]  Hiard, S.; Charlier, C.; Coppieters, W.; Georges, M.; Baurain, D. Patrocles: A database of polymorphic mirna-mediated gene regulation in vertebrates. Nucleic Acids Res. 2010, 38, D640–D651.
[20]  Jazdzewski, K.; Liyanarachchi, S.; Swierniak, M.; Pachucki, J.; Ringel, M.D.; Jarzab, B.; de la Chapelle, A. Polymorphic mature micrornas from passenger strand of pre-mir-146a contribute to thyroid cancer. Proc. Natl. Acad. Sci. USA 2009, 106, 1502–1505, doi:10.1073/pnas.0812591106.
[21]  Zorc, M.; Skok, D.J.; Godnic, I.; Calin, G.A.; Horvat, S.; Jiang, Z.; Dovc, P.; Kunej, T. Catalog of microrna seed polymorphisms in vertebrates. PLoS One 2012, 7, e30737.
[22]  Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The microRNA.org resource: Targets and expression. Nucleic Acids Res. 2008, 36, D149–D153.
[23]  Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mrnas are conserved targets of micrornas. Genome Res. 2009, 19, 92–105.
[24]  Ziebarth, J.D.; Bhattacharya, A.; Chen, A.; Cui, Y. Polymirts database 2.0: Linking polymorphisms in microrna target sites with human diseases and complex traits. Nucleic Acids Res. 2012, 40, D216–D221, doi:10.1093/nar/gkr1026.
[25]  Tay, Y.; Zhang, J.; Thomson, A.M.; Lim, B.; Rigoutsos, I. Micrornas to nanog, oct4 and sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455, 1124–1128, doi:10.1038/nature07299.
[26]  Lee, I.; Ajay, S.S.; Yook, J.I.; Kim, H.S.; Hong, S.H.; Kim, N.H.; Dhanasekaran, S.M.; Chinnaiyan, A.M.; Athey, B.D. New class of microrna targets containing simultaneous 5'-utr and 3'-utr interaction sites. Genome Res. 2009, 19, 1175–1183, doi:10.1101/gr.089367.108.
[27]  Bao, L.; Zhou, M.; Wu, L.; Lu, L.; Goldowitz, D.; Williams, R.W.; Cui, Y. Polymirts database: Linking polymorphisms in microrna target sites with complex traits. Nucleic Acids Res. 2007, 35, D51–D54, doi:10.1093/nar/gkl797.
[28]  Zhang, W.; Edwards, A.; Zhu, D.; Flemington, E.K.; Deininger, P.; Zhang, K. Mirna-mediated relationships between cis-snp genotypes and transcript intensities in lymphocyte cell lines. PLoS One 2012, 7, e31429.
[29]  Grimson, A.; Farh, K.K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 2007, 27, 91–105, doi:10.1016/j.molcel.2007.06.017.
[30]  Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The role of site accessibility in microrna target recognition. Nat. Genet. 2007, 39, 1278–1284, doi:10.1038/ng2135.
[31]  Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microrna targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11, R90, doi:10.1186/gb-2010-11-8-r90.
[32]  Liu, C.; Zhang, F.; Li, T.; Lu, M.; Wang, L.; Yue, W.; Zhang, D. Mirsnp, a database of polymorphisms altering mirna target sites, identifies mirna-related snps in gwas snps and eqtl. BMC Genomics 2012, 13, 661, doi:10.1186/1471-2164-13-661.
[33]  Landi, D.; Gemignani, F.; Naccarati, A.; Pardini, B.; Vodicka, P.; Vodickova, L.; Novotny, J.; Forsti, A.; Hemminki, K.; Canzian, F.; et al. Polymorphisms within micro-rna-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 2008, 29, 579–584.
[34]  Hariharan, M.; Scaria, V.; Brahmachari, S.K. Dbsmr: A novel resource of genome-wide snps affecting microrna mediated regulation. BMC Bioinforma. 2009, 10, 108, doi:10.1186/1471-2105-10-108.
[35]  Thomas, L.F.; Saito, T.; Saetrom, P. Inferring causative variants in microrna target sites. Nucleic Acids Res. , 2011 39, e109.
[36]  Saito, T.; Saetrom, P. A two-step site and mrna-level model for predicting microrna targets. BMC Bioinforma. 2010, 11, 612, doi:10.1186/1471-2105-11-612.
[37]  Sethupathy, P.; Corda, B.; Hatzigeorgiou, A.G. Tarbase: A comprehensive database of experimentally supported animal microrna targets. RNA 2006, 12, 192–197, doi:10.1261/rna.2239606.
[38]  Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. Mirecords: An integrated resource for microrna-target interactions. Nucleic Acids Res. 2009, 37, D105–D110, doi:10.1093/nar/gkn851.
[39]  Hsu, S.D.; Lin, F.M.; Wu, W.Y.; Liang, C.; Huang, W.C.; Chan, W.L.; Tsai, W.T.; Chen, G.Z.; Lee, C.J.; Chiu, C.M.; et al. Mirtarbase: A database curates experimentally validated microrna-target interactions. Nucleic Acids Res. 2011, 39, D163–D169, doi:10.1093/nar/gkq1107.
[40]  Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A.C.; Munschauer, M.; et al. Transcriptome-wide identification of rna-binding protein and microrna target sites by par-clip. Cell 2010, 141, 129–141, doi:10.1016/j.cell.2010.03.009.
[41]  Bhartiya, D.; Laddha, S.V.; Mukhopadhyay, A.; Scaria, V. Mirvar: A comprehensive database for genomic variations in micrornas. Hum. Mutat. 2011, 32, E2226–E2245, doi:10.1002/humu.21482.
[42]  International HapMap Consortium. The international hapmap project. Nature 2003, 426, 789–796, doi:10.1038/nature02168.
[43]  Wang, L.; Oberg, A.L.; Asmann, Y.W.; Sicotte, H.; McDonnell, S.K.; Riska, S.M.; Liu, W.; Steer, C.J.; Subramanian, S.; Cunningham, J.M.; et al. Genome-wide transcriptional profiling reveals microrna-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS One 2009, 4, e5878, doi:10.1371/journal.pone.0005878.
[44]  Lu, J.; Clark, A.G. Impact of microrna regulation on variation in human gene expression. Genome Res. 2012, 22, 1243–1254, doi:10.1101/gr.132514.111.
[45]  Huang, R.S.; Gamazon, E.R.; Ziliak, D.; Wen, Y.; Im, H.K.; Zhang, W.; Wing, C.; Duan, S.; Bleibel, W.K.; Cox, N.J.; et al. Population differences in microrna expression and biological implications. RNA Biol. 2011, 8, 692–701, doi:10.4161/rna.8.4.16029.
[46]  Gamazon, E.R.; Ziliak, D.; Im, H.K.; LaCroix, B.; Park, D.S.; Cox, N.J.; Huang, R.S. Genetic architecture of microrna expression: Implications for the transcriptome and complex traits. Am. J. Hum. Genet. 2012, 90, 1046–1063, doi:10.1016/j.ajhg.2012.04.023.
[47]  Stranger, B.E.; Nica, A.C.; Forrest, M.S.; Dimas, A.; Bird, C.P.; Beazley, C.; Ingle, C.E.; Dunning, M.; Flicek, P.; Koller, D.; et al. Population genomics of human gene expression. Nat. Genet. 2007, 39, 1217–1224, doi:10.1038/ng2142.
[48]  Dimas, A.S.; Deutsch, S.; Stranger, B.E.; Montgomery, S.B.; Borel, C.; Attar-Cohen, H.; Ingle, C.; Beazley, C.; Gutierrez Arcelus, M.; et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 2009, 325, 1246–1250, doi:10.1126/science.1174148.
[49]  Nica, A.C.; Parts, L.; Glass, D.; Nisbet, J.; Barrett, A.; Sekowska, M.; Travers, M.; Potter, S.; Grundberg, E.; Small, K.; et al. The architecture of gene regulatory variation across multiple human tissues: The muther study. PLoS Genet. 2011, 7, e1002003, doi:10.1371/journal.pgen.1002003.
[50]  Schadt, E.E.; Molony, C.; Chudin, E.; Hao, K.; Yang, X.; Lum, P.Y.; Kasarskis, A.; Zhang, B.; Wang, S.; Suver, C.; et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 2008, 6, e107, doi:10.1371/journal.pbio.0060107.
[51]  Myers, A.J.; Gibbs, J.R.; Webster, J.A.; Rohrer, K.; Zhao, A.; Marlowe, L.; Kaleem, M.; Leung, D.; Bryden, L.; Nath, P.; et al. A survey of genetic human cortical gene expression. Nat. Genet. 2007, 39, 1494–1499, doi:10.1038/ng.2007.16.
[52]  Yang, T.P.; Beazley, C.; Montgomery, S.B.; Dimas, A.S.; Gutierrez-Arcelus, M.; Stranger, B.E.; Deloukas, P.; Dermitzakis, E.T. Genevar: A database and java application for the analysis and visualization of snp-gene associations in eqtl studies. Bioinformatics 2010, 26, 2474–2476, doi:10.1093/bioinformatics/btq452.
[53]  Bruno, A.E.; Li, L.; Kalabus, J.L.; Pan, Y.; Yu, A.; Hu, Z. Mirdsnp: A database of disease-associated snps and microrna target sites on 3'utrs of human genes. BMC Genomics 2012, 13, 44.
[54]  Durbin, R.M.; Abecasis, G.R.; Altshuler, D.L.; Auton, A.; Brooks, L.D.; Gibbs, R.A.; Hurles, M.E.; McVean, G.A. A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061–1073, doi:10.1038/nature09534.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413