全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Single Step Nanoplasmonic Immunoassay for the Measurement of Protein Biomarkers

DOI: 10.3390/bios3010077

Keywords: gold nanorods, optical coherence tomography, protein biomarkers, immunoassay, surface plasmon resonance, glucose transporter-17?

Full-Text   Cite this paper   Add to My Lib

Abstract:

A nanoplasmonic biosensor for highly-sensitive, single-step detection of protein biomarkers is presented. The principle is based on the utilization of the optical scattering properties of gold nanorods (GNRs) conjugated to bio-recognition molecules. The nanoplasmonic properties of the GNRs were utilized to detect proteins using near-infrared light interferometry. We show that the antibody-conjugated GNRs can specifically bind to our model analyte, Glucose Transporter-1 (Glut-1). The signal intensity of back-scattered light from the GNRs bound after incubation, correlated well to the Glut-1 concentration as per the calibration curve. The detection range using this nanoplasmonic immunoassay ranges from 10 ng/mL to 1 ug/mL for Glut-1. The minimal detectable concentration based on the lowest discernable concentration from zero is 10 ng/mL. This nanoplasmonic immunoassay can act as a simple, selective, sensitive strategy for effective disease diagnosis. It offers advantages such as wide detection range, increased speed of analysis (due to fewer incubation/washing steps), and no label development as compared to traditional immunoassay techniques. Our future goal is to incorporate this detection strategy onto a microfluidic platform to be used as a point-of-care diagnostic tool.

References

[1]  Bock, J.L. The new era of automated immunoassay. Am. J. Clin. Pathol.?2000, 113, 628–646, doi:10.1309/DUDM-3Y6L-3R1L-QP15.
[2]  Hage, D.S. Immunoassays. Anal. Chem.?1999, 71, 294R–304R, doi:10.1021/a1999901+.
[3]  Joos, T.O.; Stoll, D.; Templin, M.F. Miniaturised multiplexed immunoassays. Curr. Opin. Chem. Biol.?2002, 6, 76–80, doi:10.1016/S1367-5931(01)00289-7.
[4]  Borrebaeck, C.A.K. Antibodies in diagnostics—From immunoassays to protein chips. Immunol. Today?2000, 21, 379–382, doi:10.1016/S0167-5699(00)01683-2.
[5]  Huang, X.; Neretina, S.; El‐Sayed, M.A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater.?2009, 21, 4880–4910, doi:10.1002/adma.200802789.
[6]  Tong, L.; Wei, Q.; Wei, A.; Cheng, J.X. Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects. Photochem. Photobiol.?2009, 85, 21–32, doi:10.1111/j.1751-1097.2008.00507.x.
[7]  Aizpurua, J.; Bryant, G.W.; Richter, L.J.; De Abajo, F.J.G.; Kelley, B.K.; Mallouk, T. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B?2005, 71, 235420:1–235420:13.
[8]  Dickerson, E.B.; Dreaden, E.C.; Huang, X.; El-Sayed, I.H.; Chu, H.; Pushpanketh, S.; McDonald, J.F.; El-Sayed, M.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett.?2008, 269, 57–66, doi:10.1016/j.canlet.2008.04.026.
[9]  Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today?2008, 3, 40–47, doi:10.1016/S1748-0132(08)70014-8.
[10]  Alkilany, A.M.; Nagaria, P.K.; Hexel, C.R.; Shaw, T.J.; Murphy, C.J.; Wyatt, M.D. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small?2009, 5, 701–708, doi:10.1002/smll.200801546. 19226599
[11]  Alekseeva, A.; Bogatyrev, V.; Khlebtsov, B.; Mel’nikov, A.; Dykman, L.; Khlebtsov, N. Gold nanorods: Synthesis and optical properties. Colloid J.?2006, 68, 661–678, doi:10.1134/S1061933X06060019.
[12]  Troutman, T.S.; Barton, J.K.; Romanowski, M. Optical coherence tomography with plasmon resonant nanorods of gold. Optic. Lett.?2007, 32, 1438–1440, doi:10.1364/OL.32.001438.
[13]  Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol.?2010, 624, 343–357, doi:10.1007/978-1-60761-609-2_23.
[14]  Ni, W.; Kou, X.; Yang, Z.; Wang, J. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano?2008, 2, 677–686, doi:10.1021/nn7003603.
[15]  S?nnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett.?2002, 88, 77402:1–77402:4.
[16]  Thanh, N.T.K.; Rosenzweig, Z. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal. Chem.?2002, 74, 1624–1628, doi:10.1021/ac011127p.
[17]  Nam, J.M.; Jang, K.J.; Groves, J.T. Detection of proteins using a colorimetric bio-barcode assay. Nat. Protocol.?2007, 2, 1438–1444, doi:10.1038/nprot.2007.201.
[18]  You, C.C.; De, M.; Rotello, V.M. Monolayer-protected nanoparticle-protein interactions. Curr. Opin. Chem. Biol.?2005, 9, 639–646, doi:10.1016/j.cbpa.2005.09.012.
[19]  Maier, I.; Morgan, M.R.A.; Lindner, W.; Pittner, F. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. Anal. Chem.?2008, 80, 2694–2703, doi:10.1021/ac702107k.
[20]  Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science?1991, 254, 1178–1181, doi:10.1126/science.1957169. 1957169
[21]  Schuman, J.S.; Stinson, W.G.; Chang, W.; Puliafito, C.A.; Fujimoto, J.G. Optical coherence tomography. Science?1995, 254, 1178–1181.
[22]  Carvalho, K.C.; Cunha, I.W.; Rocha, R.M.; Ayala, F.R.; Cajaíba, M.M.; Begnami, M.D.; Vilela, R.S.; Paiva, G.R.; Andrade, R.G.; Soares, F.A. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics?2011, 66, 965–972, doi:10.1590/S1807-59322011000600008.
[23]  Yamamoto, T.; Seino, Y.; Fukumoto, H.; Koh, G.; Yano, H.; Inagaki, N.; Yamada, Y.; Inoue, K.; Manabe, T.; Imura, H. Over-expression of facilitative glucose transporter genes in human cancer. Biochem. Biophys. Res. Commun.?1990, 170, 223–230, doi:10.1016/0006-291X(90)91263-R.
[24]  Younes, M.; Lechago, L.V.; Somoano, J.R.; Mosharaf, M.; Lechago, J. Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res.?1996, 56, 1164–1167. 8640778
[25]  Cooper, R.; Sarioglu, S.; S?kmen, S.; Füzün, M.; Küpelioglu, A.; Valentine, H.; G?rken, I.B.; Airley, R.; West, C. Glucose transporter-1 (GLUT-1): A potential marker of prognosis in rectal carcinoma. Br. J. Canc.?2003, 89, 870–876, doi:10.1038/sj.bjc.6601202.
[26]  Tohma, T.; Okazumi, S.; Makino, H.; Cho, A.; Mochizuki, R.; Shuto, K.; Kudo, H.; Matsubara, K.; Gunji, H.; Matsubara, H. Overexpression of glucose transporter 1 in esophageal squamous cell carcinomas: A marker for poor prognosis. Dis. Esophagus?2005, 18, 185–189, doi:10.1111/j.1442-2050.2005.00489.x. 16045581
[27]  Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.?2003, 15, 1957–1962, doi:10.1021/cm020732l.
[28]  Orendorff, C.J.; Murphy, C.J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B?2006, 110, 3990–3994, doi:10.1021/jp0570972.
[29]  Liu, M.; Guyot-Sionnest, P. Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B?2005, 109, 22192–22200, doi:10.1021/jp054808n.
[30]  Gou, L.; Murphy, C.J. Fine-tuning the shape of gold nanorods. Chem. Mater.?2005, 17, 3668–3672, doi:10.1021/cm050525w.
[31]  Wang, X.; Li, Y.; Wang, H.; Fu, Q.; Peng, J.; Wang, Y.; Du, J.; Zhou, Y.; Zhan, L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron.?2010, 26, 404–410, doi:10.1016/j.bios.2010.07.121.
[32]  Didychuk, C.L.; Ephrat, P.; Belton, M.; Carson, J.J.L. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods. Proc. SPIE?2008, doi:10.1117/12.763765.
[33]  Kirui, D.K.; Krishnan, S.; Strickland, A.D.; Batt, C.A. PAA-derived gold nanorods for cellular targeting and photothermal therapy. Macromol. Biosci.?2011, 11, 779–788, doi:10.1002/mabi.201100050.
[34]  Murphy, C.J.; Thompson, L.B.; Chernak, D.J.; Yang, J.A.; Sivapalan, S.T.; Boulos, S.P.; Huang, J.; Alkilany, A.M.; Sisco, P.N. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci.?2011, 16, 128–134, doi:10.1016/j.cocis.2011.01.001.
[35]  Oldenburg, A.L.; Hansen, M.N.; Ralston, T.S.; Wei, A.; Boppart, S.A. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J. Mater. Chem.?2009, 19, 6407–6411, doi:10.1039/b823389f.
[36]  Orendorff, C.J.; Hankins, P.L.; Murphy, C.J. pH-Triggered assembly of gold nanorods. Langmuir?2005, 21, 2022–2026, doi:10.1021/la047595m.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133