全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Fiber-Optic Fluoroimmunoassay System with a Flow-Through Cell for Rapid On-Site Determination of Escherichia coli O157:H7 by Monitoring Fluorescence Dynamics

DOI: 10.3390/bios3010120

Keywords: E. coli O157:H7, fluorescence, immunoassay, optical fiber, flow cell

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dynamic fluoroimmunoassay with a flow-through system using optical fiber probes consisting of polystyrene was developed and applied to a quantitative detection of E. coli O157:H7. The system measures E. coli as fluorescence of sandwich-type immune complexes formed by capture antibodies immobilized on the surface of the probe, E. coli cells, and fluorescently labeled detection antibodies. Excitation was carried out using an evanescent wave from the probe. Resulting fluorescence recoupled into the probe was detected by a photodiode. The assay system was constructed with a flow cell which was available for sequential injection of experimental reagents. In vitro characterization was performed using the flow cell, and the calibration range of E. coli O157:H7 was from 10 3 to 10 7 cells/mL. The measurement for each sample was completed within 12 min. Furthermore, it was also possible to estimate the concentrations of E. coli O157:H7 by the increasing rate of fluorescence during binding reaction of detection antibodies to antigens. This minimized the time for measurement down to 6 min. The system is suitable for rapid and direct determination for microorganisms or bacteria in food, clinical, and environmental sources.

References

[1]  Tilden, J.J.; Young, W.; McNamara, A.M.; Custer, C.; Boesel, B.; Lambert-Fair, M.A.; Majkowski, J.; Vugia, D.; Werner, S.B.; Hollingsworth, J.; Morris, J.G.J. A new route of transmission for Escherichia coli: Infection from dry fermented salami. Am. J. Publ. Health 1996, 86, 1142–1145, doi:10.2105/AJPH.86.8_Pt_1.1142.
[2]  O’Brien, A.O.; Lively, T.A.; Chen, M.E.; Rothman, S.W.; Formal, S.B. Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga) like cytotoxin. Lancet 1983, 321, doi:10.1016/S0140-6736(83)91987-6.
[3]  Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11, 603–609.
[4]  Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Hebert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargrett, N.T.; Blake, P.A.; Cohen, M.L. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 1983, 308, 681–685, doi:10.1056/NEJM198303243081203.
[5]  Mead, P.S.; Griffin, P.M. Escherichia coli O157:H7. Lancet 1998, 352, 1207–1212, doi:10.1016/S0140-6736(98)01267-7.
[6]  Tarr, P.I.; Gordon, C.A.; Chandler, W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005, 365, 1073–1086.
[7]  Michino, H.; Araki, K.; Minami, S.; Takaya, S.; Sakai, N.; Miyazaki, M.; Ono, A.; Yanagawa, H. Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 1999, 150, 787–796, doi:10.1093/oxfordjournals.aje.a010082.
[8]  Chapman, P.A.; Cerdan, Malo, A.T.; Siddons, C.A.; Harkin, M. Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples. Appl. Environ. Microbiol. 1997, 63, 2549–2553.
[9]  Hammack, T.S.; Feng, P.; Amagua?a, R.M.; June, G.A.; Sherrod, P.S.; Andrews, W.H. Comparison of sorbitol MacConkey and hemorrhagic coli agars for recovery of Escherichia coli O157:H7 from brie, ice cream, and whole milk. J. AOAC Int. 1997, 80, 335–340.
[10]  Edberg, S.C.; Kontnick, C.M. Comparison of β-glucuronidase-based substrate systems for identification of Escherichia coli. J. Clin. Microbiol. 1986, 24, 368–371.
[11]  Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999, 14, 599–624, doi:10.1016/S0956-5663(99)00039-1.
[12]  Wang, H.; Sharpe, A.N. An immuno-capturing and concentrating procedure for Escherichia coli O157:H7 and its detection by epifluorescence microscopy. Food Microbiol. 1998, 15, 559–565, doi:10.1006/fmic.1998.0200.
[13]  West, J.M.; Tsuruta, H.; Kantrowitz, E.R. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state. J. Biol. Chem. 2004, 279, 945–951.
[14]  Pérez, F.G.; Mascini, M.; Tothill, I.E.; Turner, A.P. Immunomagnetic separation with mediated flow injection analysis amperometric detection of viable Escherichia coli O157. Anal. Chem. 1998, 70, 2380–2386, doi:10.1021/ac970715t.
[15]  Wright, D.J.; Chapman, P.A.; Siddons, C.A. Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol. Infect. 1994, 113, 31–39, doi:10.1017/S0950268800051438.
[16]  Su, X.L.; Li, Y. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem. 2004, 76, 4806–4810, doi:10.1021/ac049442+.
[17]  Mo, X.T.; Zhou, Y.P.; Lei, H.; Deng, L. Microbalance-DNA probe method for the detection of specific bacteria in water. Enzyme Microb. Technol. 2002, 30, 583–589, doi:10.1016/S0141-0229(01)00484-7.
[18]  Wang, R.F.; Cao, W.W.; Johnson, M.G. 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl. Environ. Microbiol. 1992, 58, 2827–2831.
[19]  Su, X.; Low, S.; Kwang, J.; Chew, V.H.T.; Li, S.F.Y. Piezoelectric quartz crystal based veterinary diagnosis for Salmonella enteritidis infection in chicken and egg. Sens. Actuator. B Chem. 2001, 75, 29–35, doi:10.1016/S0925-4005(00)00737-1.
[20]  Uchida, H.; Fujitani, K.; Kawai, Y.; Kitazawa, H.; Horii, A.; Shiiba, K.; Saito, K.; Saito, T. A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin. Biosci. Biotechnol. Biochem. 2004, 68, 1004–1010, doi:10.1271/bbb.68.1004.
[21]  Jindou, S.; Soda, A.; Karita, S.; Kajino, T.; Béguin, P.; Wu, J.H.D.; Inagaki, M.; Kimura, T.; Sakka, K.; Ohmiya, K. Cohesin-dockerin interactions within and between Clostridium josui and Clostridium thermocellum: Binding selectivity between cognate dockerin and cohesin domains and species specificity. J. Biol. Chem. 2004, 279, 9867–9874.
[22]  Hardegger, D.; Nadal, D.; Bossart, W.; Altwegg, M.; Dutly, F. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR. J. Microbiol. Methods 2000, 41, 45–51, doi:10.1016/S0167-7012(00)00135-4.
[23]  Ahmed, N.; Mohanty, A.K.; Mukhopadhyay, U.; Batish, V.K.; Grover, S. PCR-based rapid detection of Mycobacterium tuberculosis in blood from immunocompetent patients with pulmonary tuberculosis. J. Clin. Microbiol. 1998, 36, 3094–3095.
[24]  Gunasekera, T.S.; Attfield, P.V.; Veal, D.A. A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl. Environ. Microbiol. 2000, 66, 1228–1232, doi:10.1128/AEM.66.3.1228-1232.2000.
[25]  Marks, R.S.; Bassis, E.; Bychenko, A.; Levine, M.M. Chemiluminescent optical fiber immunosensor for detecting cholera antitoxin. Opt. Eng. 1997, 36, 3258–3264, doi:10.1117/1.601560.
[26]  Petrosova, A.; Konry, T.; Cosnier, S.; Trakht, I.; Lutwama, J.; Rwaguma, E.; Chepurnov, A.; Mühlberger, E.; Lobel, L.; Marks, R.S. Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sens. Actuator. B Chem. 2007, 122, 578–586, doi:10.1016/j.snb.2006.07.005.
[27]  Sobarzo, A.; Paweska, J.T.; Herrmann, S.; Amir, T.; Marks, R.S.; Lobel, L. Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans. J. Virol. Methods 2007, 146, 327–334, doi:10.1016/j.jviromet.2007.07.017.
[28]  Petrovich, M.N.; van Brakel, A.; Poletti, F.; Mukasa, K.; Austin, E.; Finazzi, V.; Petropoulos, P.; O'Driscoll, E.; Watson, M.; DelMonte, T.; Monro, T.M.; Dakin, J.P.; Richardson, D.J. Microstructured Fibers for Sensing Applications. In Proceedings of the SPIE Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, Boston, MA, USA, October 2005; Du, H.H., Ed.; SPIE: Washington, DC, USA, 2005; pp. 78–92.
[29]  Stewart, G.; Jin, W.; Culshaw, B. Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared. Sens. Actuator. B Chem. 1997, 38, 42–47, doi:10.1016/S0925-4005(97)80169-4.
[30]  Monro, T.M.; Belardi, W.; Furusawa, K.; Baggett, J.C.; Broderick, N.G.R.; Richardson, D.J. Sensing with microstructured optical fibres. Meas. Sci. Technol. 2001, 12, 854–859, doi:10.1088/0957-0233/12/7/318.
[31]  Lim, D.V. Detection of microorganisms and toxins with evanescent wave, fiber optic biosensors. Proc. IEEE 2003, 91, 902–907, doi:10.1109/JPROC.2003.813574.
[32]  Golden, J.P.; Saaski, E.W.; Shriver-Lake, L.C.; Anderson, G.P.; Ligler, F.S. Portable multichannel fiber optic biosensor for field detection. Opt. Eng. 1997, 36, 1008–1013.
[33]  Leskinen, S.D.; Schlemmer, S.M.; Kearns, E.A.; Lim, D.V. Detection of E. coli O157:H7 in Complex Matrices under Varying Flow Parameters with a Robotic Fluorometric Assay System. In Proceedings of the SPIE Frontiers in Pathogen Detection: From Nanosensors to Systems, San Francisco, CA, USA, February 2009; Fauchet, P.M., Ed.; SPIE: Washington, DC, USA, 2010; pp. 71670J1–71670J10.
[34]  Taniguchi, M.; Akai, E.; Koshida, T.; Hibi, K.; Kudo, H.; Otsuka, K.; Saito, H.; Yano, K.; Endo, H.; Mitsubayashi, K. A fiber optic immunosensor for rapid bacteria determination. IFMBE Proc. 2007, 15, 308–311, doi:10.1007/978-3-540-68017-8_79.
[35]  Wang, Y.; Ye, W.; Si, C.; Ying, Y. Subtractive inhibition assay for the detection of E. coli O157:H7 using surface plasmon resonance. Sensors 2011, 11, 2728–2739.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133