全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Improving the Design of a MscL-Based Triggered Nanovalve

DOI: 10.3390/bios3010171

Keywords: drug-delivery, nanovalve, osmoregulation, biosensor, hydrophobic gating, mechanosensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mechanosensitive channel of large conductance, MscL, has been proposed as a triggered nanovalve to be used in drug release and other nanodevices. It is a small homopentameric bacterial protein that has the largest gated pore known: greater than 30 ?. Large molecules, even small proteins can be released through MscL. Although MscL normally gates in response to membrane tension, early studies found that hydrophilic or charged residue substitutions near the constriction of the channel leads to pore opening. Researchers have successfully changed the modality of MscL to open to stimuli such as light by chemically modifying a single residue, G22, within the MscL pore. Here, by utilizing in vivo, liposome efflux, and patch clamp assays we compared modification of G22 with that of another neighboring residue, G26, and demonstrate that modifying G26 may be a better choice for triggered nanovalves used for triggered vesicular release of compounds.

References

[1]  Blount, P.; Sukharev, S.I.; Moe, P.; Kung, C. Mechanosensitive channels of E. coli: A genetic and molecular dissection. Biol. Bull, 1997, 192, 126–127.
[2]  Blount, P.; Iscla, I.; Moe, P.C.; Li, Y. MscL: The bacterial mechanosensitive channel of large conductance. In Mechanosensitive Ion Channels (A Volume in the Current Topics in Membranes Series); Hamill, O.P., Ed.; Elsievier Press: St. Louis, MO, USA, 2007; Volume 58, pp. 202–233.
[3]  Levina, N.; Totemeyer, S.; Stokes, N.R.; Louis, P.; Jones, M.A.; Booth, I.R. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. EMBO J. 1999, 18, 1730–1737, doi:10.1093/emboj/18.7.1730.
[4]  Cruickshank, C.C.; Minchin, R.F.; Le Dain, A.C.; Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 1997, 73, 1925–1931, doi:10.1016/S0006-3495(97)78223-7.
[5]  Chang, G.; Spencer, R.H.; Lee, A.T.; Barclay, M.T.; Rees, D.C. Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 1998, 282, 2220–2226, doi:10.1126/science.282.5397.2220.
[6]  Steinbacher, S.; Bass, R.; Strop, P.; Rees, D.C. Structures of the prokaryotic mechanosensitive channels MscL and MscS. In Mechanosensitive Ion Channels (A Volume in the Current Topics in Membranes Series); Hamill, O.P., Ed.; Elsievier Press: St. Louis, MO, USA, 2007; Volume 58, pp. 1–20.
[7]  Iscla, I.; Levin, G.; Wray, R.; Reynolds, R.; Blount, P. Defining the physical gate of a mechanosensitive channel, MscL, by engineering metal-binding sites. Biophys. J. 2004, 87, 3172–3180, doi:10.1529/biophysj.104.049833.
[8]  Levin, G.; Blount, P. Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys. J. 2004, 86, 2862–2870, doi:10.1016/S0006-3495(04)74338-6.
[9]  Ou, X.; Blount, P.; Hoffman, R.J.; Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 1998, 95, 11471–11475, doi:10.1073/pnas.95.19.11471.
[10]  Yoshimura, K.; Batiza, A.; Schroeder, M.; Blount, P.; Kung, C. Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys. J. 1999, 77, 1960–1972, doi:10.1016/S0006-3495(99)77037-2.
[11]  Blount, P.; Moe, P.C. Bacterial mechanosensitive channels: Integrating physiology, structure and function. Trends Microbiol. 1999, 7, 420–424, doi:10.1016/S0966-842X(99)01594-2.
[12]  Bartlett, J.L.; Levin, G.; Blount, P. An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 2004, 101, 10161–10165, doi:10.1073/pnas.0402040101.
[13]  Bartlett, J.L.; Li, Y.; Blount, P. Mechanosensitive channel gating transitions resolved by functional changes upon pore modification. Biophys. J. 2006, 91, 3684–3691, doi:10.1529/biophysj.106.088062.
[14]  Batiza, A.F.; Kuo, M.M.; Yoshimura, K.; Kung, C. Gating the bacterial mechanosensitive channel MscL invivo. Proc. Natl. Acad. Sci. USA 2002, 99, 5643–5648, doi:10.1073/pnas.082092599.
[15]  Yoshimura, K.; Batiza, A.; Kung, C. Chemically charging the pore constriction opens the mechanosensitive channel MscL. Biophys. J. 2001, 80, 2198–2206, doi:10.1016/S0006-3495(01)76192-9.
[16]  Blount, P.; Sukharev, S.I.; Moe, P.C.; Martinac, B.; Kung, C. Mechanosensitive channels of bacteria. In Method Enzymol; Academic Press: San Diego, CA, USA, 1999; Volume 294, pp. 458–482.
[17]  Berrier, C.; Guilvout, I.; Bayan, N.; Park, K.H.; Mesneau, A.; Chami, M.; Pugsley, A.P.; Ghazi, A. Coupled cell-free synthesis and lipid vesicle insertion of a functional oligomeric channel MscL MscL does not need the insertase YidC for insertion in vitro. Biochim. Biophys. Acta 2011, 1808, 41–46, doi:10.1016/j.bbamem.2010.09.018.
[18]  Clayton, D.; Shapovalov, G.; Maurer, J.A.; Dougherty, D.A.; Lester, H.A.; Kochendoerfer, G.G. Total chemical synthesis and electrophysiological characterization of mechanosensitive channels from Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2004, 101, 4764–4769, doi:10.1073/pnas.0305693101 .
[19]  Ko?er, A.; Walko, M.; Bulten, E.; Halza, E.; Feringa, B.; Meijberg, W. Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew. Chem. 2006, 45, 3126–3130, doi:10.1002/anie.200503403.
[20]  Ko?er, A.; Walko, M.; Feringa, B.L. Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL. Nat. Protoc. 2007, 2, 1426–1437, doi:10.1038/nprot.2007.196.
[21]  Ko?er, A.; Walko, M.; Meijberg, W.; Feringa, B.L. A light-actuated nanovalve derived from a channel protein. Science 2005, 309, 755–758, doi:10.1126/science.1114760.
[22]  Yang, L.M.; Blount, P. Manipulating the permeation of charged compounds through the MscL nanovalve. FASEB J. 2011, 25, 428–434, doi:10.1096/fj.10-170076.
[23]  Yang, L.M.; Wray, R.; Parker, J.; Wilson, D.; Duran, R.S.; Blount, P. Three routes to modulate the pore size of the MscL channel/nanovalve. ACS Nano 2012, 6, 1134–1141, doi:10.1021/nn203703j.
[24]  Iscla, I.; Wray, R.; Blount, P. On the structure of the N-terminal domain of the MscL channel: Helical bundle or membrane interface. Biophys. J. 2008, 95, 2283–2291, doi:10.1529/biophysj.107.127423.
[25]  Powl, A.M.; East, J.M.; Lee, A.G. Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. Biochemistry 2008, 47, 4317–4328, doi:10.1021/bi702409t.
[26]  Blount, P.; Sukharev, S.I.; Schroeder, M.J.; Nagle, S.K.; Kung, C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 1996, 93, 11652–11657, doi:10.1073/pnas.93.21.11652.
[27]  Moe, P.; Blount, P. Assessment of potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension, and lipid headgroup. Biochemistry 2005, 44, 12239–12244, doi:10.1021/bi0509649.
[28]  Blount, P.; Sukharev, S.I.; Moe, P.C.; Schroeder, M.J.; Guy, H.R.; Kung, C. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J. 1996, 15, 4798–4805.
[29]  Li, Y.; Wray, R.; Eaton, C.; Blount, P. An open-pore structure of the mechanosensitive channel MscL derived by determining transmembrane domain interactions upon gating. FASEB J. 2009, 23, 2197–2204, doi:10.1096/fj.09-129296.
[30]  Dorwart, M.R.; Wray, R.; Brautigam, C.A.; Jiang, Y.; Blount, P. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: Implications for detergent-solubilized membrane proteins. PLoS Biol. 2010, 8, doi:10.1371/journal.pbio.1000.
[31]  Sukharev, S.I.; Blount, P.; Martinac, B.; Blattner, F.R.; Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 1994, 368, 265–268, doi:10.1038/368265a0.
[32]  Doerner, J.F.; Febvay, S.; Clapham, D.E. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nat. Commun. 2012, 3, doi:10.1038/ncomms1999.
[33]  Iscla, I.; Wray, R.; Blount, P. The oligomeric state of the truncated mechanosensitive channel of large conductance shows no variance in vivo. Protein Sci. 2011, 20, 1638–1642, doi:10.1002/pro.686.
[34]  Liu, Z.; Gandhi, C.S.; Rees, D.C. Structure of a tetrameric MscL in an expanded intermediate state. Nature 2009, 461, 120–124, doi:10.1038/nature08277.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413