全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Biomimetic Strategies for Sensing Biological Species

DOI: 10.3390/bios3010089

Keywords: biomimetic strategies, molecular imprinting, polymer affinity materials, membrane mimics, biosensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The starting point of modern biosensing was the application of actual biological species for recognition. Increasing understanding of the principles underlying such recognition (and biofunctionality in general), however, has triggered a dynamic field in chemistry and materials sciences that aims at joining the best of two worlds by combining concepts derived from nature with the processability of manmade materials, e.g., sensitivity and ruggedness. This review covers different biomimetic strategies leading to highly selective (bio)chemical sensors: the first section covers molecularly imprinted polymers (MIP) that attempt to generate a fully artificial, macromolecular mold of a species in order to detect it selectively. A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them. Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors. Finally, this review will highlight some approaches to generate artificial analogs of natural recognition materials and biomimetic approaches in nanotechnology. It mainly focuses on the literature published since 2005.

References

[1]  Bar-Cohen, Y. Biomimetics—Using Nature as an Inspiring Model for Innovation; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2006.
[2]  Johnson, E.A.C.; Bonser, R.H.C.; Jeronimidis, G. Recent advances in biomimetic sensing technologies. Phil. Trans. Roy. Soc. A?2009, 367, 1559–1569, doi:10.1098/rsta.2009.0005.
[3]  Mustafa, G.; Lieberzeit, P.A. MIP sensors on the way to real-world applications. In Designing Receptors for the Next Generation of Biosensors, Springer Series on Chemical Sensors and Biosensors; Piletsky, S.A., Whitcombe, M., Eds.; Springer: Berlin, Germany, 2013; pp. 167–188.
[4]  Iqbal, N.; Lieberzeit, P.A. Artificial receptors for mass-sensitive sensors: Targeting analytes from surfaces, nanoparticles, and bioanalytes by molecular imprinting. In Molecularly Imprinted Sensors: Overview and Applications; Li, S., Ge, Y., Pitelsky, S.A., Lunec, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 195–237.
[5]  Hayden, O.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Artificial antibodies for bioanalyte detection —Sensing viruses and proteins. Adv. Funct. Mater.?2006, 16, 1269–1278, doi:10.1002/adfm.200500626.
[6]  Zhang, Y.L.; Liang, Z.; Zhang, Y. Protein-imprinted materials: Rational design, application and challenges. Anal. Bioanal. Chem.?2012, 403, 2173–2183.
[7]  Alexander, C.; Vulfson, E.N. Spatially functionalized polymer surfaces produced via cell-mediated lithography. Adv. Mater.?1997, 9, 751–755, doi:10.1002/adma.19970090916.
[8]  Lu, L.; Zhang, Y.; Tang, S.; Fang, Z.; Yang, H.; Chen, X.; Chen, G. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens. Bioelectron.?2012, 31, 439–444, doi:10.1016/j.bios.2011.11.008.
[9]  Liao, P.C.; Tyan, Y.C.; Wang, C.Y.; Hsu, J.F.; Chou, T.C.; Lin, H.Y. Assessing the binding selectivity of molecularly imprinted polymer artificial antibodies by mass spectrometry-based profiling system. J. Biomed. Mater. Res. A?2009, 91A, 597–604, doi:10.1002/jbm.a.32257.
[10]  Hayden, O.; Hadersp?ck, C.; Krassnig, S.; Chen, X.; Dickert, F.L. Surface imprinting strategies for the detection of trypsin. Analyst?2006, 131, 1044–1050, doi:10.1039/b608354b.
[11]  Seidler, K.; Polreichová, M.; Lieberzeit, P.A.; Dickert, F.L. Biomimetic yeast cell typing-application of QCMs. Sensors?2009, 9, 8146–8157, doi:10.3390/s91008146.
[12]  Jenik, M.; Seifner, A.; Krassnig, S.; Seidlera, K.; Lieberzeit, P.A.; Dickert, F.L.; Jungbauer, C. Sensors for bioanalytes by imprinting—Polymers mimicking both biological receptors and the corresponding bioparticles. Biosens. Bioelectron.?2009, 25, 9–14, doi:10.1016/j.bios.2009.01.019.
[13]  Hayden, O.; Mann, K.J.; Krassnig, S.; Dickert, F.L. Biomimetic ABO blood-group typing. Angew. Chem. Int. Ed.?2006, 45, 2626–2629, doi:10.1002/anie.200502857.
[14]  Hillberg, A.L.; Tabrizian, M. Biomolecule imprinting: Developments in mimicking dynamic natural recognition systems. IRBM?2008, 29, 89–104.
[15]  Schirhagl, R.; Latif, U.; Podlipna, D.; Blumenstock, H.; Dickert, F.L. Natural and biomimetic materials for the detection of insulin. Anal. Chem.?2012, 84, 3908–3913.
[16]  Wangchareansak, T.; Sangma, C.; Choowongkomon, K.; Dickert, F.L.; Lieberzeit, P.A. Surface molecular imprints of WGA lectin as artificial receptors for mass-sensitive binding studies. Anal. Bioanal. Chem.?2011, 400, 2499–2506, doi:10.1007/s00216-011-4952-0.
[17]  Zhao, W.; Chen, Z.; Xue, B.; Sun, L.; Luo, A. A biomimetic sensor for fast lysozyme detection. Adv. Mater. Res.?2011, 239–242, 283–287, doi:10.4028/www.scientific.net/AMR.239-242.283.
[18]  Gai, Q.-Q.; Qu, F.; Liu, Z.-J.; Dai, R.-J.; Zhangt, Y.-K. Superparamagnetic lysozyme surface-imprinted polymer prepared by atom transfer radical polymerization and its application for protein separation. J. Chromatogr. A?2010, 1217, 5035–5042, doi:10.1016/j.chroma.2010.06.001.
[19]  Wang, Y.; Zhang, Z.; Jain, V.; Yi, J.; Mueller, S.; Sokolov, J.; Liu, Z.; Levon, K.; Rigas, B.; Rafailovic, M.H. Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses. Sens. Actuator. B.?2010, 146, 381–387, doi:10.1016/j.snb.2010.02.032.
[20]  Hilbig, U.; Bleher, O.; Blanc, A.L.; Gauglitz, G. A biomimetic sensor surface to detect anti-β2-glycoprotein-I antibodies as a marker for antiphospholipid syndrome. Anal. Bioanal. Chem.?2012, 403, 713–717.
[21]  Vaisocherova, H.; Yang, W.; Zhang, Z.; Cao, Z.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem.?2008, 80, 7894–7901.
[22]  Henry, O.Y.F.; Sanchez, J.L.A.; O’Sullivan, C.K. Bipodal PEGylatedalkanethiol for the enhanced electrochemical detection of genetic markers involved in breast cancer. Biosens. Bioelectron.?2010, 26, 1500–1506, doi:10.1016/j.bios.2010.07.095.
[23]  Mueller, L.; Sinn, S.; Drechsel, H.; Ziegler, C.; Wendel, H.; Northoff, H.; Gehring, F.K. Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. Anal. Chem.?2010, 82, 658–663.
[24]  Sinn, S.; Eichler, M.; Muller, L.; Bunger, D.; Groll, J.; Ziegler, G.; Rupp, F.; Northoff, H.; Geis-Gerstorfer, J.; Gehring, F.K.; Wendel, H.P. NCO-sP(EO-stat-PO) coatings on gold sensors—A QCM study of hemocompatibility. Sensors?2011, 11, 5253–5269, doi:10.3390/s110505253.
[25]  Ibri?imovi?, N.; Ibri?imovi?, M.; Barth, M.; Bohrn, U. Biomimetic PLGA sensor: Proof of principle and application. Monatsh. Chem.?2010, 141, 125–130, doi:10.1007/s00706-009-0234-3.
[26]  Meir, D.; Silbert, L.; Volinsky, R.; Kolusheva1, S.; Weiser, I.; Jelinek, R. Colorimetric/fluorescent bacterial sensing by agaroseembedded lipid/polydiacetylene films. J. Appl. Microbiol.?2008, 104, 787–795.
[27]  Scindia, Y.; Silbert, L.; Volinsky, R.; Kolusheva, S.; Jelinek, R. Colorimetric detection and fingerprinting of bacteria by glass-supported lipid/polydiacetylene films. Langmuir?2007, 23, 4682–4687.
[28]  Chang, K.S.; Sun, C.J.; Chiang, P.L.; Chou, A.C.; Lind, M.C.; Liang, C.; Hung, H.; Yeh, Y.H,; Chen, C.D.; Pan, C.Y.; Chen, Y.T. Monitoring extracellular K+ flux with a valinomycin-coated silicon nano wire field-effect transistor. Biosens. Bioelectron.?2012, 31, 137–143, doi:10.1016/j.bios.2011.10.005.
[29]  Yang, J.; Yan, X.B.; Wang, Y.; Luo, B.M.; Wang, L.P.; Xue, Q.J. Deposition of bio-mimicking graphene sheets with lotus leaf-like and cell-like structures on the nickel substrate. Chin. Sci. Bull.?2012, doi:10.1007/s11434-012-5310-0.
[30]  Birnbaumer, G.M.; Lieberzeit, P.A.; Richter, L.; Schirhagl, R.; Milnera, M.; Dickert, F.L.; Bailey, A.; Ertl, P. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip?2009, 9, 3549–3556, doi:10.1039/b914738a.
[31]  Ateh, D.D.; Waterworth, A.; Walker, D.; Brown, B.; Navsaria, H.; Vadgama, P. Impedimetric sensing of cells on poly pyrrole-based conducting polymers. J. Biomed. Mater. Res.A?2007, 83A, 391–400.
[32]  Zhu, Q.; Shih, W.Y.; Shih, W.H. In situ, in-liquid, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/gold-coated glass cantilevers at any dipping depth. Biosens. Bioelectron.?2007, 22, 3132–3138, doi:10.1016/j.bios.2007.02.005.
[33]  Jiao, T.; Bouvier, B.D.L.; Boullanger, P.; Blum, L.J.; Egrot, A.P.G. A chemiluminescent Langmuir-Blodgett membrane as the sensing layer for the reagentless monitoring of an immobilized enzyme activity. Colloid. Surface A?2010, 354, 284–290, doi:10.1016/j.colsurfa.2009.07.034.
[34]  Choi, I.; Lee, S.; Hong, S.; Yang, Y.I.; Song, H.D.; Yi, J. Development of a Novel Biosensor for In Vitro Observation of Protein Behaviors. In Proceedings of IEEE Sensor Conference, Seoul, Korea, 25–28 October 2009.
[35]  Pavan, S.; Berti, F. Short peptides as biosensor transducers. Anal. Bioanal. Chem.?2012, 402, 3055–3070, doi:10.1007/s00216-011-5589-8.
[36]  Myung, J.H.; Launiere, C.A.; Eddington, D.T.; Hong, S. Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: Implications for the effective separation of circulating tumor cells (CTCs). Langmuir.?2010, 26, 8589–8596, doi:10.1021/la904678p.
[37]  Mascini, M.; Carlo, M.D.; Compagnone, D.; Cozzani, I.; Tiscar, P.G.; Mpamhanga, C.P.; Chen, B. Piezoelectric sensors based on biomimetic peptides for the detection of heat shock proteins (HSPs) in mussels. Anal. Lett.?2006, 39, 1627–1642, doi:10.1080/00032710600713529.
[38]  Zhang, D.; Yan, Y.; Li, Q.; Yu, T.; Cheng, W.; Wang, L.; Ju, H.; Ding, S. Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor. J. Biotechnol.?2012, 160, 123–128.
[39]  Pelossof, G.; Vered, R.T.; Elbaz, J.; Willner, I. Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal. Chem.?2010, 82, 4396–4402, doi:10.1021/ac100095u.
[40]  Toks?z, S.; Guler, M.O. Self-assembled peptidic nanostructures. Nano Today?2009, 4, 458–469, doi:10.1016/j.nantod.2009.09.002.
[41]  Lim, J.Y.; Donahue, H.J. Cell sensing and response to micro- and nano structured surfaces produced by chemical and topographic patterning. Tissue Eng.?2007, 13, 1879–1891, doi:10.1089/ten.2006.0154.
[42]  Ansari, A.A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S. Prospects of nanotechnology in clinical immunodiagnostics. Sensors?2010, 10, 6535–6581, doi:10.3390/s100706535.
[43]  Delehantya, J.B.; Susumub, K.; Manthea, R.L.; Algara, W.R.; Medintz, I.L. Active cellular sensing with quantum dots: Transitioning from research tool to reality. Anal. Chim. Acta.?2012, 750, 63–81, doi:10.1016/j.aca.2012.05.032.
[44]  Sun, H.; Choy, T.S.; Zhu, D.R.; Yam, W.C.; Fung, Y.S. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens. Bioelectron.?2009, 24, 1405–1410, doi:10.1016/j.bios.2008.08.008.
[45]  Sundh, M.; Svedhem, S.; Sutherland, D.S. Formation of supported lipid bilayers at surfaces with controlled curvatures: Influence of lipid charge. J. Phys. Chem. B?2011, 115, 7838–7848, doi:10.1021/jp2025363.
[46]  Lee, K.S.; Noh, H.B.; Won, M.S.; Shim, Y.B. Fabrication of a Biomimetic Membrane with Biomaterials-Attached Conducting Polymer: Application to a NADH Sensor. In Proceedings of IEEE Sensor Conference, Busan, Korea, 25–28 October 2009.
[47]  Lin, H.; Lu, Q.; Ge, S.; Cai, Q.; Grimes, C.A. Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens. Actuator. B?2010, 147, 343–349, doi:10.1016/j.snb.2010.03.011.
[48]  Wang, L.; Wei, Q.; Wut, C.; Ji, J.; Wang, P. A QCM Biosensor Based on Gold Nanoparticles Amplification for Real-Time Bacteria DNA Detection. In Proceedings of 2007 IEEE International Conference on Information Acquisition, Jeju, Korea, 9–11 July 2007.
[49]  Jia, X.; Xu, M.; Wang, Y.; Ran, D.; Yang, S.; Zhang, M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst?2013, 138, 651–658, doi:10.1039/c2an36313e.
[50]  Saifullina, D.V.; Shakhmaeva, I.I.; Abdullin, T.I. Assessment of metabolic activity of human cells in solution and in polymer matrix with the use of metabolite-sensitive sensors. Mater. Sci. Eng. C?2012, 32, 1843–1848, doi:10.1016/j.msec.2012.05.001.
[51]  Li, J.; Tang, J.; Zhou, J.; Han, X.; Liu, H. Direct electrochemistry and electro catalysis of hemoglobin immobilized on polyacrylamide-P123 film modified glassy carbon electrode. Bioelectrochemistry?2012, 86, 60–66, doi:10.1016/j.bioelechem.2012.02.002.
[52]  Kim, J.M.; Kim, J.H.; Cha, J.Y.; Kim, S.Y.; Kang, I. A biomimetic artificial neuron matrix system based on carbon nanotubes for tactile sensing of e-skin. J. Inst. Control Robot. Syst.?2012, 3, 188–192.
[53]  Singh, R.; Verma, R.; Sumana, G.; Srivastava, A.K.; Sood, S.; Gupta, R.K.; Malhotra, B.D. Nano biocomposite platform based on poly aniline-iron oxide-carbon nano tubes for bacterial detection. Bioelectrochemistry?2012, 86, 30–37, doi:10.1016/j.bioelechem.2012.01.005.
[54]  Huang, Y.X.; Zheng, X.J.; Kang, L.L.; Chen, X.Y.; Liu, W.; Huang, B.T.; Wu, Z.J. Quantum dots as a sensor for quantitative visualization of surface charges on single living cells with nano-scale resolution. Biosens. Bioelectron.?2011, 26, 2114–2118, doi:10.1016/j.bios.2010.09.016.
[55]  Wu, C.S.; Oo, M.K.K.; Cupps, J.M.; Fan, X. Robust silica-coated quantum dot—Molecular beacon for highly sensitive DNA detection. Biosens. Bioelectron.?2011, 26, 3870–3875, doi:10.1016/j.bios.2011.02.049.
[56]  Xie, M.; Hu, J.; Long, Y.M.; Zhang, Z.L.; Xie, H.Y.; Pang, D.W. Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosens. Bioelectron.?2009, 24, 1311–1317, doi:10.1016/j.bios.2008.07.058.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133