全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Application of Paper-Supported Printed Gold Electrodes for Impedimetric Immunosensor Development

DOI: 10.3390/bios3010001

Keywords: paper electronics, nanoparticles, inkjet printing, immunoassays, impedance spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we report on the formation and mode-of-operation of an affinity biosensor, where alternate layers of biotin/streptavidin/biotinylated-CRP-antigen/anti-CRP antibody are grown on printed gold electrodes on disposable paper-substrates. We have successfully demonstrated and detected the formation of consecutive layers of supra-molecular protein assembly using an electrical (impedimetric) technique. The formation process is also supplemented and verified using conventional surface plasmon resonance (SPR) measurements and surface sensitive characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The article provides a possible biosensor development scheme, where—(1) fabrication of paper substrate (2) synthesis of gold nanoparticle inks (3) inkjet printing of gold electrodes on paper (4) formation of the biorecognition layers on the gold electrodes and (5) electrical (impedimetric) analysis of growth—all are coupled together to form a test-structure for a recyclable and inexpensive point-of-care diagnostic platform.

References

[1]  Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev. 2008, 60, 307–318.
[2]  Sj?wall, C.; Wetter?, J. Pathogenic implications for autoantibodies against C-reactive protein and other acute phase proteins. Clin. Chim. Acta 2007, 378, 13–23, doi:10.1016/j.cca.2006.12.002.
[3]  Berggren, C.; Bjarnason, B.; Johansson, G. Capacitive biosensors. Electroanalysis 2001, 13, 173–180, doi:10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B.
[4]  Katz, E.; Willner, I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors and enzyme biosensors. Electroanalysis 2003, 15, 913–947, doi:10.1002/elan.200390114.
[5]  Guan, J.G.; Miao, Y.Q.; Zhang, Q.J. Impedimetric biosensors. J. Biosens. Bioeng. 2004, 97, 219–226.
[6]  K’Owino, I.O.; Sadik, O.A. Impedance spectroscopy: A powerful tool for rapid, biomolecular screening and cell culturing monitoring. Electroanalysis 2005, 17, 2101–2113, doi:10.1002/elan.200503371.
[7]  Daniels, J.S.; Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 2007, 19, 1239–1257, doi:10.1002/elan.200603855.
[8]  Prodromidis, M.I. Impedimetric immunosensors—A review. Electrochim. Acta 2010, 55, 4227–4233, doi:10.1016/j.electacta.2009.01.081.
[9]  Tobj?rk, D.; ?sterbacka, R. Paper Electronics. Adv. Mater. 2011, 23, 1935–1961.
[10]  Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483, doi:10.1039/b917150a.
[11]  Zang, D.; Ge, L.; Yan, M.; Song, X.; Yu, J. Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun. 2012, 48, 4683–4685.
[12]  Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826.
[13]  M??tt?nen, A.; Vanamo, U.; Ihalainen, P.; Pulkkinen, P.; Tenhu, H.; Bobacka, J.; Peltonen, J. A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens. Actuator. B Chem. 2012, doi:10.1016/j.snb.2012.10.113.
[14]  Bollstr?m, R.; M??tt?nen, A.; Ihalainen, P.; Toivakka, M. Method for Creating a Substrate for Printed or Coated Functionality, Substrate, Functional Device and Its Use. WO 2010/086511, PCT/FI2010/050056, August 2010.
[15]  Bollstr?m, R.; M??tt?nen, A.; Tobj?rk, D.; Ihalainen, P.; Kaihovirta, N.; ?sterbacka, R.; Peltonen, J.; Toivakka, M. A multilayer coated fiber-based substrate suitable for printed functionality. Org. Electron. 2009, 10, 1020–1023.
[16]  M??tt?nen, A.; Ihalainen, P.; Bollstr?m, R; Toivakka, M.; Peltonen, J. Wetting and print quality study of an inkjet-printed poly(3-hexylthiophene) on pigment coated papers. Colloid. Surface. A 2010, 367, 76–84.
[17]  Ihalainen, P.; M??tt?nen, A.; Mattinen, U.; Stepien, S.; Bollstr?m, R.; Toivakka, M.; Bobacka, J.; Peltonen, J. Electrodeposition on PEDOT-Cl film on a fully printed Ag/polyaniline electrode on paper. Thin Solid Films 2011, 519, 2172–2175.
[18]  Tobj?rk, D.; Aarnio, H.; Pulkkinen, P.; Bollstr?m, R.; M??tt?nen, A.; Ihalainen, P.; M?kel?, T.; Peltonen, J.; Toivakka, M.; Tenhu, H.; ?sterbacka, R. IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 2012, 520, 2949–2955.
[19]  M??tt?nen, A.; Ihalainen, P.; Pulkkinen, P.; Wang, S.; Tenhu, H.; Peltonen, J. Inkjet-printed gold electrodes on paper: Characterization and functionalization. ACS Appl. Mater. Interfaces 2012, 4, 955–964.
[20]  Ihalainen, P.; Majumdar, H.; M??tt?nen, A.; Wang, S.; ?sterbacka, R.; Peltonen, J. Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications. BBA-Gen. Subjects 2012, doi:10.1016/j.bbagen.2012.09.007.
[21]  Hostetler, M.J.; Wingate, J.E.; Zhong, C.-J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; Glish, G.L.; Porter, M.D.; Evans, N.D.; Murray, R.W. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 1998, 14, 17–30.
[22]  M??tt?nen, A.; Fors, D.; Wang, S.; Valtakari, D.; Ihalainen, P.; Peltonen, J. Paper-based planar reaction arrays for printed diagnostics. Sens. Actuator. B Chem. 2011, 160, 1404–1412, doi:10.1016/j.snb.2011.09.086.
[23]  Reimhult, E.; Larsson, C.; Kasemo, B.; H??k, F. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal. Chem. 2004, 76, 7211–7220, doi:10.1021/ac0492970.
[24]  Su, X.; Wu, Y.; Robelek, R.; Knoll, W. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 2005, 21, 348–353, doi:10.1021/la047997u.
[25]  Yang, N.; Su, X.; Tjong, V.; Knoll, W. Evaluation of 2-D and 3-D streptavidin chips for study DNA-DNA and protein-DNA interactions. Biosens. Bioeletron. 2009, 24, 2522–2527, doi:10.1016/j.bios.2009.01.006.
[26]  Motie, M.; Brockmeier, S.; Potempa, L.A. Binding of model soluble immune complexes to modified C-reactive protein. J. Immunol. 1996, 156, 4435–4441.
[27]  Shirve, A.K.; Cheetham, G.M.T.; Holden, D.; Myles, D.A.; Turnell, W.G.; Volanakis, J.E.; Pepys, M.B.; Bloomer, A.C.; Greenhough, T.J. Three dimensional structure of human C-reactive protein. Nat. Struct. Biol. 1996, 3, 346–354, doi:10.1038/nsb0496-346.
[28]  Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 167–177, doi:10.1016/S0969-2126(99)80110-5.
[29]  Lin, S.; Lee, C.-K.; Wang, Y.-M.; Huang, L.-S.; Lin, Y.-H.; Lee, S.-Y.; Sheu, B.-C.; Hsu, S.-M. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosens. Bioeletron. 2005, 22, 323–327.
[30]  Lee, S.-K.; Kim, H.-C.; Cho, S.-J.; Jeong, S.W.; Jeon, W.B. Binding behavior of CRP and anti-CRP antibody analyzed with SPR and AFM measurement. Ultramicroscopy 2008, 108, 1374–1378, doi:10.1016/j.ultramic.2008.04.064.
[31]  Lindberg, B.; Maripuu, R.; Siegbahn, K.; Larsson, R.; Golander, C.C.; Eriksson, J.C. ESCA studies of heparinized and related surfaces. J. Colloid Interface Sci. 1983, 95, 308–321, doi:10.1016/0021-9797(83)90190-X.
[32]  Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992.
[33]  Sousa, S.R.; Moradas-Ferreira, P.; Saramago, B.; Viseu Melo, L.; Barbosa, M.A. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma. Langmuir 2004, 20, 9745–9754.
[34]  Weber, P.C.; Ohlendorf, D.H.; Wendoloski, J.J.; Salemme, F.R. Structural origins of high-affinity biotin binding to streptavidin. Science 1989, 243, 85–88.
[35]  Silverton, E.W.; Navia, M.A.; Davies, D.R. Three-dimensional structure of an intact human immunoglobulin. Proc. Natl. Acad. Sci. USA 1977, 74, 5140–5144, doi:10.1073/pnas.74.11.5140.
[36]  Stelzle, M.; Weissmueller, G.; Sackmann, E. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Phys. Chem. 1993, 97, 2974–2981.
[37]  Pei, R.; Cheng, Z.; Wang, E.; Yang, X. Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosens. Bioeletron. 2001, 16, 355–361.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133