全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Evaluation of Impedance-Based Label-Free Technology as a Tool for Pharmacology and Toxicology Investigations

DOI: 10.3390/bios3010132

Keywords: real-time cell analyzer (RTCA), impedance, drug discovery, investigative pharmacology, predictive toxicology, screening

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of label-free technologies based on electrical impedance is becoming more and more popular in drug discovery. Indeed, such a methodology allows the continuous monitoring of diverse cellular processes, including proliferation, migration, cytotoxicity and receptor-mediated signaling. The objective of the present study was to further assess the usefulness of the real-time cell analyzer (RTCA) and, in particular, the xCELLigence platform, in the context of early drug development for pharmacology and toxicology investigations. In the present manuscript, four cellular models were exposed to 50 compounds to compare the cell index generated by RTCA and cell viability measured with a traditional viability assay. The data revealed an acceptable correlation ( ca. 80%) for both cell lines ( i.e., HepG2 and HepaRG), but a lack of correlation ( ca. 55%) for the primary human and rat hepatocytes. In addition, specific RTCA profiles (signatures) were generated when HepG2 and HepaRG cells were exposed to calcium modulators, antimitotics, DNA damaging and nuclear receptor agents, with a percentage of prediction close to 80% for both cellular models. In a subsequent experiment, HepG2 cells were exposed to 81 proprietary UCB compounds known to be genotoxic or not. Based on the DNA damaging signatures, the RTCA technology allowed the detection of ca. 50% of the genotoxic compounds (n = 29) and nearly 100% of the non-genotoxic compounds (n = 52). Overall, despite some limitations, the xCELLigence platform is a powerful and reliable tool that can be used in drug discovery for toxicity and pharmacology studies.

References

[1]  Whitebread, S.; Hamon, J.; Bojanic, D.; Urban, L. Keynote review: In vitro safety pharmacology profiling: An essential tool for successful drug development. Drug Discov. Today 2005, 10, 1421–1433, doi:10.1016/S1359-6446(05)03632-9.
[2]  Suter, W. Improving decision-making in drug development using in vitro toxicology screening. Int. J. Pharm. Med. 2007, 21, 347–355, doi:10.2165/00124363-200721050-00005.
[3]  Gerets, H.H.; Hanon, E.; Cornet, M.; Dhalluin, S.; Depelchin, O.; Canning, M.; Atienzar, F.A. Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: A preliminary study using a multiplexing approach. Toxicol. In Vitro 2009, 23, 319–332, doi:10.1016/j.tiv.2008.11.012.
[4]  Tilmant, K.; Gerets, H.H.; Dhalluin, S.; Hanon, E.; Depelchin, O.; Cossu-Leguille, C.; Vasseur, P.; Atienzar, F.A. Comparison of a genomic and a multiplex cell imaging approach for the detection of phospholipidosis. Toxicol. In Vitro 2011, 25, 1414–1424, doi:10.1016/j.tiv.2011.04.010.
[5]  Tilmant, K.; Gerets, H.H.; de Ron, P.; Cossu-Leguille, C.; Vasseur, P.; Dhalluin, S.; Atienzar, F.A. The automated micronucleus assay for early assessment of genotoxicity in drug discovery. Mutat. Res. 2013, 751, 1–11, doi:10.1016/j.mrgentox.2012.10.011.
[6]  Kepp, O.; Galluzzi, L.; Lipinski, M.; Yuan, J.; Kroemer, G. Cell death assays for drug discovery. Nat. Rev. Drug Discov. 2011, 10, 221–237.
[7]  Ke, N.; Xi, B.; Ye, P.; Xu, W.; Zheng, M.; Mao, L.; Wu, M.J.; Zhu, J.; Wu, J.; Zhang, W.; Zhang, J.; Irelan, J.; Wang, X.; Xu, X.; Abassi, Y.A. Screening and identification of small molecule compounds perturbing mitosis using time-dependent cellular response profiles. Anal. Chem. 2010, 82, 6495–6503.
[8]  Kustermann, S.; Boess, F.; Buness, A.; Schmitz, M.; Watzele, M.; Weiser, T.; Singer, T.; Suter, L.; Roth, A. A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol. In Vitro 2013. in press.
[9]  Abassi, Y.A.; Xi, B.; Zhang, W.; Ye, P.; Kirstein, S.L.; Gaylord, M.R.; Feinstein, S.C.; Wang, X.; Xu, X. Kinetic cell-based morphological screening: Prediction of mechanism of compound action and off-target effects. Chem. Biol. 2009, 16, 712–723, doi:10.1016/j.chembiol.2009.05.011.
[10]  Rammah, M.; Dandachi, F.; Salman, R.; Shihadeh, A.; El-Sabban, M. In vitro cytotoxicity and mutagenicity of mainstream waterpipe smoke and its functional consequences on alveolar type II derived cells. Toxicol. Lett. 2012, 211, 220–231, doi:10.1016/j.toxlet.2012.04.003.
[11]  Moodley, K.; Angel, C.E.; Glass, M.; Graham, E.S. Real-time profiling of NK cell killing of human astrocytes using xCELLigence technology. J. Neurosci. Methods 2011, 200, 173–180, doi:10.1016/j.jneumeth.2011.07.005.
[12]  Diemert, S.; Dolga, A.M.; Tobaben, S.; Grohm, J.; Pfeifer, S.; Oexler, E.; Culmsee, C. Impedance measurement for real time detection of neuronal cell death. J. Neurosci. Methods 2012, 203, 69–77, doi:10.1016/j.jneumeth.2011.09.012.
[13]  Sergent, J.A.; Paget, V.; Chevillard, S. Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann. Occup. Hyg. 2012, 56, 622–630.
[14]  Atienzar, F.A.; Tilmant, K.; Gerets, H.H.; Toussaint, G.; Speeckaert, S.; Hanon, E.; Depelchin, O.; Dhalluin, S. The use of real-time cell analyzer technology in drug discovery: Defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J. Biomol. Screen. 2011, 16, 575–587, doi:10.1177/1087057111402825.
[15]  Gerets, H.H.; Tilmant, K.; Gerin, B.; Chanteux, H.; Depelchin, B.O.; Dhalluin, S.; Atienzar, F.A. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 2012, 28, 69–87, doi:10.1007/s10565-011-9208-4.
[16]  Solly, K.; Wang, X.; Xu, X.; Strulovici, B.; Zheng, W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev. Technol. 2004, 2, 363–372, doi:10.1089/adt.2004.2.363.
[17]  Hastwell, P.W.; Webster, T.W.; Tate, M.; Billinton, N.; Lynch, A.M.; Harvey, J.S.; Rees, R.W.; Walmsley, R.M. Analysis of 75 marketed pharmaceuticals using the GADD45a-GFP ‘GreenScreen HC’ genotoxicity assay. Mutagenesis 2009, 24, 455–463, doi:10.1093/mutage/gep029.
[18]  Flamand, N.; Meunier, J.; Meunier, P.; Agapakis-Caussé, C. Mini mutagenicity test: A miniaturized version of the Ames test used in a prescreening assay for point mutagenesis assessment. Toxicol. In Vitro 2001, 15, 105–114, doi:10.1016/S0887-2333(01)00003-0.
[19]  Cooper, M.A. Non-optical screening platforms: The next wave in label-free screening? Drug Discov. Today 2006, 11, 1068–1074, doi:10.1016/j.drudis.2006.10.001.
[20]  Xi, B.; Yu, N.; Wang, X.; Xu, X.; Abassi, Y.A. The application of cell-based label-free technology in drug discovery. Biotechnol. J. 2008, 3, 484–495, doi:10.1002/biot.200800020.
[21]  Feng, Y.; Mitchison, T.J.; Bender, A.; Young, D.W.; Tallarico, J.A. Multi-parameter phenotypic profiling: Using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 2009, 8, 567–578, doi:10.1038/nrd2876.
[22]  Cho, Y.S.; Kwon, H.J. Identification and validation of bioactive small molecule target through phenotypic screening. Bioorg. Med. Chem. 2012, 20, 1922–1928, doi:10.1016/j.bmc.2011.11.021.
[23]  Niles, A.L.; Moravec, R.A.; Riss, T.L. In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. Curr. Chem. Genomics 2009, 3, 33–41, doi:10.2174/1875397300903010033.
[24]  Vistejnova, L.; Dvorakova, J.; Hasova, M.; Muthny, T.; Velebny, V.; Soucek, K.; Kubala, L. The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuro. Endocrinol. Lett. 2009, 30, 121–127.
[25]  Irelan, J.T.; Wu, M.J.; Morgan, J.; Ke, N.; Xi, B.; Wang, X.; Xu, X.; Abassi, Y.A. Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis. J. Biomol. Screen. 2011, 16, 313–322, doi:10.1177/1087057110397359.
[26]  Birrell, L.; Cahill, P.; Hughes, C.; Tate, M.; Walmsley, R.M. GADD45a-GFP GreenScreen HC assay results for the ECVAM recommended lists of genotoxic and non-genotoxic chemicals for assessment of new genotoxicity tests. Mutat. Res. 2010, 695, 87–95, doi:10.1016/j.mrgentox.2009.12.008.
[27]  Flückiger-Isler, S.; Kamber, M. Direct comparison of the Ames microplate format (MPF) test in liquid medium with the standard Ames pre-incubation assay on agar plates by use of equivocal to weakly positive test compounds. Mutat. Res. 2012, 747, 36–45, doi:10.1016/j.mrgentox.2012.03.014.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413