|
hCG, the wonder of today's scienceAbstract: These 5 molecules, hCG, sulfated hCG, hyperglycosylated hCG, hCG free beta and hyperglycosylated free beta are produced by placental syncytiotrophoblast cells and pituitary gonadotrope cells (group 1), and by placental cytotrophoblast cells and human malignancies (group 2). Group 1 molecules are both hormones that act on the hCG/LH receptor. These molecules are central to human menstrual cycle and human pregnancy. Group 2 molecules are autocrines, that act by antagonizing a TGF beta receptor. These molecules are critical to all advanced malignancies.The hCG groups are molecules critical to both the molecules of pregnancy or human life, and to the advancement of cancer, or human death.Let's get to the point, why do we call human chorionic gonadotropin (hCG) the wonder of today's science. Firstly, hCG is an extreme molecule. It is the most acid protein in humans, some hCG variants have a peak isoelectric point (pI) stretching to pI 3.1. hCG variants are the most sialylated glycoproteins with up to 15 sialic acid residues per molecule. hCG variants are the most glycosylated of glycoproteins, hCG containing 30% sugar by molecular weight, hyperglycosylated hCG containing 39% sugar and hyperglycosylated hCG free ?-subunit containing 42% sugar by molecular weight. Finally, with its extreme molecular weights, hCG is the longest circulating molecule in human blood with a circulating half life of 36 hours. Secondly, as described in this review, there are amazingly 5 unique variants of hCG, each having identical amino acid sequence, produced by different cells and having independent functions. These are hCG, sulfated hCG, hyperglycosylated hCG, hCG free ?-subunit and hyperglycosylated hCG free ?-subunit. There is no other molecule like hCG.Finally, hCG and its variants have an incredibly wide spectrum of biological functions. These range from hyperglycosylated hCG and pregnancy implantation and placental development, to hyperglycosylated hCG and hCG and hemochorial placentatio
|