全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Bacteria in the Pathogenesis of Ulcerative Colitis

DOI: 10.1155/2012/704953

Full-Text   Cite this paper   Add to My Lib

Abstract:

Factors implicated in the pathophysiology of ulcerative colitis (UC) are an abnormal immune response, defect in intestinal epithelial barrier function, and gut microbiota. Currently, it is unclear whether specific bacterial strains are responsible for the induction of intestinal inflammation, but increased bacterial tissue invasion has been described in affected UC patients. Further, a quantitative and qualitative microbial imbalance in UC, defined as dysbiosis, has been characterized by an increase in Rhodococcus spp., Shigella spp., and Escherichia spp., but a decrease in certain Bacteroides spp.. More specifically, Campylobacter spp., Enterobacteriae, and enterohepatic Helicobacter were more prevalent in tissue sample from UC patients subjected to molecular detection methods, but not controls. In addition, serologic testing identified Fusobacterim varium as a potential contributor to the intestinal inflammation in UC. Interestingly, in-situ hybridization studies have shown anti-inflammatory Lactobacillus spp. and Pediococcus spp. were absent in samples from subjects affected by UC. Therefore, dysbiosis is a factor in the pathogenesis of UC. 1. Introduction The gut microbiota consists predominantly of phyla members Bacteroidetes and Firmicutes, and to a lesser extent of Actinobacteria and Proteobacteria [1, 2]. There is an estimated 500 to 1,000 different bacterial species represented throughout the human intestine [3]. The number of colony forming units has been calculated at a range from 1013 to 1014, exceeding the number of human cells by factor of 10 [4]. The enteric bacterial flora as a whole is essential to the normal development and function of the intestine. Salvage of unabsorbed carbohydrates, converted into short-chain fatty acids by bacterial enzymes, is an essential energy source for intestinal epithelial cell and barrier function. The colonic microflora is also central to the synthesis of vitamins B and K [5], and maintenance of intestinal innate and adaptive immune response [3]. On the other side, there is mounting evidence that the intestinal microflora can induce, transfer, and prevent conditions like obesity, type I diabetes, and inflammatory bowel disease (IBD) with a detrimental effect on human health [6]. The focus of this paper is to summarize the evidence for a role of enteric bacteria in the pathogenesis of ulcerative colitis (UC). Computational data mining by canonical correlation analysis confirmed the critical and disease-relevant interaction of mucosa-associated bacteria and host in IBD [7]. Bacterial interactions with the

References

[1]  E. G. Zoetendal, M. Rajili?-Stojanovi?, and W. M. De Vos, “High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota,” Gut, vol. 57, no. 11, pp. 1605–1615, 2008.
[2]  G. W. Tannock, “The bowel microbiota and inflammatory bowel diseases,” International Journal of Inflammation, vol. 2010, Article ID 954051, 9 pages, 2010.
[3]  C. L. Sears, “A dynamic partnership: celebrating our gut flora,” Anaerobe, vol. 11, no. 5, pp. 247–251, 2005.
[4]  L. V. Hooper and J. I. Gordon, “Commensal host-bacterial relationships in the gut,” Science, vol. 292, no. 5519, pp. 1115–1118, 2001.
[5]  J. H. Cummings and G. T. Macfarlane, “Collaborative JPEN-Clinical Nutrition Scientific Publications role of intestinal bacteria in nutrient metabolism,” Journal of Parenteral and Enteral Nutrition, vol. 21, no. 6, pp. 357–365, 1997.
[6]  M. Serino, E. Luche, C. Chabo, J. Amar, and R. Burcelin, “Intestinal microflora and metabolic diseases,” Diabetes and Metabolism, vol. 35, no. 4, pp. 262–272, 2009.
[7]  L. L. Presley, J. Ye, X. Li, et al., “Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface,” Inflammatory Bowel Diseases, vol. 18, no. 3, pp. 409–417, 2012.
[8]  O. Cohavy, D. Bruckner, L. K. Gordon et al., “Colonic bacteria express an ulcerative colitis pANCA-related protein epitope,” Infection and Immunity, vol. 68, no. 3, pp. 1542–1548, 2000.
[9]  L. Prideaux, P. De Cruz, and S. C. Ng, “Serological antibodies in inflammatory bowel disease: a systematic review,” Inflammatory Bowel Diseases. In press.
[10]  D. McGovern and F. Powrie, “The IL23 axis plays a key role in the pathogenesis of IBD,” Gut, vol. 56, no. 10, pp. 1333–1336, 2007.
[11]  M. Sarra, F. Pallone, T. T. MacDonald, and G. Monteleone, “IL-23/IL-17 axis in IBD,” Inflammatory Bowel Diseases, vol. 16, no. 10, pp. 1808–1813, 2010.
[12]  J. C. Barrett, J. C. Lee, C. W. Lees et al., “Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region,” Nature Genetics, vol. 41, no. 12, pp. 1330–1334, 2009.
[13]  M. A. Battle, G. Konopka, F. Parviz et al., “Hepatocyte nuclear factor 4α orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8419–8424, 2006.
[14]  K. Schmehl, S. Florian, G. Jacobasch, A. Salomon, and J. Korber, “Deficiency of epithelial basement membrane laminin in ulcerative colitis affected human colonic mucosa,” International Journal of Colorectal Disease, vol. 15, no. 1, pp. 39–48, 2000.
[15]  C. W. Lees, J. C. Barrett, M. Parkes, and J. Satsangi, “New IBD genetics: common pathways with other diseases,” Gut, vol. 60, no. 12, pp. 1739–1753, 2011.
[16]  J. Matricon, N. Barnich, and D. Ardid, “Immunopathogenesis of inflammatory bowel disease,” Self/Nonself. Immune Recognition and Signaling, vol. 1, no. 4, pp. 299–309, 2010.
[17]  U. Gophna, K. Sommerfeld, S. Gophna, W. F. Doolittle, and S. J. O. Veldhuyzen Van Zanten, “Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis,” Journal of Clinical Microbiology, vol. 44, no. 11, pp. 4136–4141, 2006.
[18]  L. A. G. Rodríguez, A. Ruigómez, and J. Panés, “Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease,” Gastroenterology, vol. 130, no. 6, pp. 1588–1594, 2006.
[19]  K. O. Gradel, H. L. Nielsen, H. C. Sch?nheyder, T. Ejlertsen, B. Kristensen, and H. Nielsen, “Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis,” Gastroenterology, vol. 137, no. 2, pp. 495–501, 2009.
[20]  A. Ternhag, A. T?rner, A. Svensson, K. Ekdahl, and J. Giesecke, “Short- and long-term effects of bacterial gastrointestinal infections,” Emerging Infectious Diseases, vol. 14, no. 1, pp. 143–148, 2008.
[21]  T. Jess, J. Simonsen, N. M. Nielsen et al., “Enteric salmonella or campylobacter infections and the risk of inflammatory bowel disease,” Gut, vol. 60, pp. 318–324, 2011.
[22]  C. Schultsz, F. M. Van den Berg, F. W. T. Kate, G. N. J. Tytgat, and J. Dankert, “The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls,” Gastroenterology, vol. 117, no. 5, pp. 1089–1097, 1999.
[23]  A. Swidsinski, A. Ladhoff, A. Pernthaler et al., “Mucosal flora in inflammatory bowel disease,” Gastroenterology, vol. 122, no. 1, pp. 44–54, 2002.
[24]  A. Swidsinski, V. Loening-Baucke, and A. Herber, “Mucosal flora in Crohn's disease and ulcerative colitis—an overview,” Journal of Physiology and Pharmacology, vol. 60, supplement 6, pp. 61–71, 2009.
[25]  R. Bibiloni, M. Mangold, K. L. Madsen, R. N. Fedorak, and G. W. Tannock, “The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients,” Journal of Medical Microbiology, vol. 55, no. 8, pp. 1141–1149, 2006.
[26]  M. P. Conte, S. Schippa, I. Zamboni et al., “Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease,” Gut, vol. 55, no. 12, pp. 1760–1767, 2006.
[27]  S. Sepehri, R. Kotlowski, C. N. Bernstein, and D. O. Krause, “Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 6, pp. 675–683, 2007.
[28]  S. O. Noor, K. Ridgway, L. Scovell et al., “Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota,” BMC Gastroenterology, vol. 10, article 134, 2010.
[29]  D. N. Frank, A. L. S. Amand, R. A. Feldman, E. C. Boedeker, N. Harpaz, and N. R. Pace, “Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13780–13785, 2007.
[30]  J. Galvez, M. E. Rodríguez-Cabezas, and A. Zarzuelo, “Effects of dietary fiber on inflammatory bowel disease,” Molecular Nutrition and Food Research, vol. 49, no. 6, pp. 601–608, 2005.
[31]  F. Lara-Villoslada, O. De Haro, D. Camuesco et al., “Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis,” European Journal of Nutrition, vol. 45, no. 7, pp. 418–425, 2006.
[32]  J. P. Segain, D. Raingeard De La Blétière, A. Bourreille et al., “Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease,” Gut, vol. 47, no. 3, pp. 397–403, 2000.
[33]  B. Kleessen, A. J. Kroesen, H. J. Buhr, and M. Blaut, “Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls,” Scandinavian Journal of Gastroenterology, vol. 37, no. 9, pp. 1034–1041, 2002.
[34]  P. Lepage, R. H?sler, M. E. Spehlmann et al., “Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis,” Gastroenterology, vol. 141, no. 1, pp. 227–236, 2011.
[35]  H. Sokol, B. Pigneur, L. Watterlot et al., “Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16731–16736, 2008.
[36]  N. B. Kumar, T. T. Nostrant, and H. D. Appelman, “The histopathologic spectrum of acute self-limited colitis (acute infectious-type colitis),” American Journal of Surgical Pathology, vol. 6, no. 6, pp. 523–529, 1982.
[37]  I. Mukhopadhya, J. M. Thomson, R. Hansen, S. H. Berry, E. M. El-Omar, and G. L. Hold, “Detection of campylobacter concisus and other campylobacter species in colonic biopsies from adults with ulcerative colitis,” PLoS One, vol. 6, no. 6, article e21490, 2011.
[38]  R. Verma, A. K. Verma, V. Ahuja, and J. Paul, “Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India,” Journal of Clinical Microbiology, vol. 48, no. 11, pp. 4279–4282, 2010.
[39]  L. D. Kalischuk, G. D. Inglis, and A. G. Buret, “Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts,” Gut Pathogens, vol. 1, p. 2, 2009.
[40]  J. M. Lamb-Rosteski, L. D. Kalischuk, G. D. Inglis, and A. G. Buret, “Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation,” Infection and Immunity, vol. 76, no. 8, pp. 3390–3398, 2008.
[41]  R. Kotlowski, C. N. Bernstein, S. Sepehri, and D. O. Krause, “High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease,” Gut, vol. 56, no. 5, pp. 669–675, 2007.
[42]  S. Schippa, M. P. Conte, O. Borrelli et al., “Dominant genotypes in mucosa-associated Escherichia coli strains from pediatric patients with inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 15, no. 5, pp. 661–672, 2009.
[43]  S. Sepehri, E. Khafipour, C. N. Bernstein et al., “Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 17, no. 7, pp. 1451–1463, 2011.
[44]  U. R. M. Bohr, B. Glasbrenner, A. Primus, A. Zagoura, T. Wex, and P. Malfertheiner, “Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease,” Journal of Clinical Microbiology, vol. 42, no. 6, pp. 2766–2768, 2004.
[45]  J. M. Thomson, R. Hansen, S. H. Berry et al., “Enterohepatic helicobacter in ulcerative colitis: potential pathogenic entities?” PLoS One, vol. 6, no. 2, article e17184, 2011.
[46]  S. Saitoh, S. Noda, Y. Aiba et al., “Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease,” Clinical and Diagnostic Laboratory Immunology, vol. 9, no. 1, pp. 54–59, 2002.
[47]  M. Minami, T. Ando, A. Okamoto et al., “Seroprevalence of Fusobacterium varium in ulcerative colitis patients in Japan,” FEMS Immunology and Medical Microbiology, vol. 56, no. 1, pp. 67–72, 2009.
[48]  T. Ohkusa, T. Yoshida, N. Sato, S. Watanabe, H. Tajiri, and I. Okayasu, “Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis,” Journal of Medical Microbiology, vol. 58, no. 5, pp. 535–545, 2009.
[49]  T. Ohkusa, I. Okayasu, T. Ogihara, K. Morita, M. Ogawa, and N. Sato, “Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis,” Gut, vol. 52, no. 1, pp. 79–83, 2003.
[50]  T. Yoshida, T. Sekine, K. I. Aisaki, T. Mikami, J. Kanno, and I. Okayasu, “CITED2 is activated in ulcerative colitis and induces p53-dependent apoptosis in response to butyric acid,” Journal of Gastroenterology, vol. 46, pp. 339–349, 2011.
[51]  T. Ohkusa, K. Kato, S. Terao et al., “Newly developed antibiotic combination therapy for ulcerative colitis: a double-blind placebo-controlled multicenter trial,” American Journal of Gastroenterology, vol. 105, no. 8, pp. 1820–1829, 2010.
[52]  T. Nomura, T. Ohkusa, I. Okayasu et al., “Mucosa-associated bacteria in ulcerative colitis before and after antibiotic combination therapy,” Alimentary Pharmacology and Therapeutics, vol. 21, no. 8, pp. 1017–1027, 2005.
[53]  T. Ohkusa, T. Nomura, T. Terai et al., “Effectiveness of antibiotic combination therapy in patients with active ulcerative colitis: a randomized, controlled pilot trial with long-term follow-up,” Scandinavian Journal of Gastroenterology, vol. 40, no. 11, pp. 1334–1342, 2005.
[54]  N. R. Bullock, J. C. L. Booth, and G. R. Gibson, “Comparative composition of bacteria in the human intestinal microflora during remission and active ulcerative colitis,” Current Issues in Intestinal Microbiology, vol. 5, no. 2, pp. 59–64, 2004.
[55]  K. Fyderek, M. Strus, K. Kowalska-Duplaga et al., “Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease,” World Journal of Gastroenterology, vol. 15, no. 42, pp. 5287–5294, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413