全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment

DOI: 10.1186/scrt54

Full-Text   Cite this paper   Add to My Lib

Abstract:

Higher organisms have the remarkable capacity to produce and maintain adequate numbers of blood cells throughout their entire lifespan to meet the normal physiological requirements of blood cell turnover, as well as to respond to needs for increased blood cell demand as a consequence of injury or infection. At the center of lifelong blood cell production is the hematopoietic stem cell (HSC), with the capacity to give rise to all mature circulating blood cell types. Regulation of HSC function is a highly complex process involving not only intrinsic cues within the HSC themselves, but signaling from the surrounding microenvironment in which they reside. It was first postulated by Schofield that defined local microenvironments created specialized stem cell niches that regulated HSCs [1]. Bone marrow is the primary HSC niche in mammals and is composed of stromal cells and an extracellular matrix of collagens, fibronectin, proteoglycans [2], and endosteal lining osteoblasts [3-6]. HSCs are thought to be tethered to osteoblasts, other stromal cells, and the extracellular matrix in this stem cell niche through a variety of adhesion molecule inter-actions, many of which are probably redundant systems.Disruption of one or more of these niche interactions can result in release of HSCs from the niche and their trafficking from the bone marrow to the peripheral circulation, a process termed peripheral blood stem cell mobilization. Mobilization can be achieved through administration of chemotherapy [7-9], hematopoietic growth factors, chemokines and small-molecule chemokine receptor inhibitors or antibodies against HSC niche interactions [10-12].The process of mobilization has been exploited for collection of hematopoietic stem and progenitor cells (HSPCs) and is widely used for hematopoietic trans-plantation in both the autologous and allogeneic settings. Mobilized peripheral blood hematopoietic stem cell grafts are associated with more rapid engraftment, reduction in infectiou

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413