全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical explanation of the predictive power of the X-level approach reaction noise estimator method

DOI: 10.1186/1742-4682-9-12

Full-Text   Cite this paper   Add to My Lib

Abstract:

Noise is an integral part of the workings of the living cell biochemistry [1]. There are many types of noise and this work focuses on the intrinsic noise. If reactant copy numbers are low they can fluctuate widely [2]. These fluctuations can severely influence the dynamics of the cell and need to be carefully controlled [3].Describing intrinsic noise has attracted a lot of effort. A range of theoretical methods have been developed to study intrinsic noise. However, an accurate characterization of the reaction noise is not easy. A direct solution of the chemical master equation for the system is often not possible since the number of configurations can be exponentially large. Numerical simulation methods can be used to avoid this problem, and are often implemented by using the Gillespie algorithm [4]. However, to obtain accurate prediction for moments of the particle number distribution function, e.g. the variance, sampling with a relatively large number of runs (simulations) is needed. This becomes impractical if the number of particle types is very large. A range of methods have been suggested to complement or replace these techniques. The focus of this work is on moment closure techniques [5-15].The main idea behind moment closure approaches is to construct the equation system that can describe various moments of the particle number distribution function. In such a way there is no need to directly solve the master equation or perform a largenumber of computer simulations. The problem is that the equation system that describes these moments is, in principle, infinite. The main issue is to cut (or close) the hierarchy. This is done in two ways. First, one can try to make some specific assumptions about the reacting system which can be used to express higher order moments in terms of lower order ones. This procedure defines the moment closure function for the problem. Second possibility is to take the distribution function centered approach and assume that the partic

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133