全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Through the Looking Glass: Visualizing Leukemia Growth, Migration, and Engraftment Using Fluorescent Transgenic Zebrafish

DOI: 10.1155/2012/478164

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processes in vivo including tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy. 1. Zebrafish Models of Leukemia Zebrafish models of hematological malignancies exhibit striking similarities with human and mouse disease [1–7], yet afford unique avenues of study due to imaging modalities that permit direct visualization of fluorescently labeled blood cells within live animals. As with mouse and human disease, zebrafish leukemias are distinguished from lymphomas by the infiltration of leukemic cells into the marrow. Lymphomas are predominantly located as masses throughout the body, including lymph nodes in mouse and human, and have no or little infiltration into the marrow [8]. Leukemias are also classified as acute or chronic. Acute leukemias are arrested at early stages of maturation, are highly proliferative, and advance quickly in patients [8]. By contrast, chronic leukemias are arrested at later stages of maturation and resemble functional, yet abnormal, blood cell counterparts. Although characterized by increased circulating white blood counts, chronic leukemias are often much slower growing and take months or years to progress. Leukemias can be further subdivided based on the blood lineage in which cells have become transformed [8]. To date, zebrafish models of Acute Lymphoblastic Leukemias (ALL), Acute Myeloid Leukemia (AML), and Myeloproliferative Neoplasms (MPN) have been described. Zebrafish first emerged as a powerful genetic model of leukemia with the description of transgenic approaches in which cMYC was overexpressed in developing

References

[1]  J. S. Blackburn, S. Liu, D. M. Raiser, et al., “Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency,” Leukemia. In press.
[2]  H. E. Sabaawy, M. Azuma, L. J. Embree, H. J. Tsai, M. F. Starost, and D. D. Hickstein, “TEL-AML1 transgenic zebrafish model of precursor B cell lymphoblastic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 41, pp. 15166–15171, 2006.
[3]  X. Le, D. M. Langenau, M. D. Keefe, J. L. Kutok, D. S. Neuberg, and L. I. Zon, “Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9410–9415, 2007.
[4]  J. R. J. Yeh, K. M. Munson, Y. L. Chao, Q. P. Peterson, C. A. MacRae, and R. T. Peterson, “AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression,” Development, vol. 135, no. 2, pp. 401–410, 2008.
[5]  D. M. Langenau, H. Feng, S. Berghmans, J. P. Kanki, J. L. Kutok, and A. T. Look, “Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 17, pp. 6068–6073, 2005.
[6]  J. Chen, C. Jette, J. P. Kanki, J. C. Aster, A. T. Look, and J. D. Griffin, “NOTCH1-induced T-cell leukemia in transgenic zebrafish,” Leukemia, vol. 21, no. 3, pp. 462–471, 2007.
[7]  D. M. Langenau, D. Traver, A. A. Ferrando et al., “Myc-induced T cell leukemia in transgenic zebrafish,” Science, vol. 299, no. 5608, pp. 887–890, 2003.
[8]  S. H. Swerdlow, International Agency for Research on Cancer, World Health Organization. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, International Agency for Research on Cancer, Lyon, France, 2008.
[9]  A. Gutierrez, R. Grebliunaite, H. Feng et al., “Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia,” Journal of Experimental Medicine, vol. 208, no. 18, pp. 1595–1603, 2011.
[10]  H. Feng, D. L. Stachura, R. M. White et al., “T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation,” Cancer Cell, vol. 18, no. 4, pp. 353–366, 2010.
[11]  J. K. Frazer, N. D. Meeker, L. Rudner et al., “Heritable T-cell malignancy models established in a zebrafish phenotypic screen,” Leukemia, vol. 23, no. 10, pp. 1825–1835, 2009.
[12]  J. Zhuravleva, J. Paggetti, L. Martin et al., “MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish,” British Journal of Haematology, vol. 143, no. 3, pp. 378–382, 2008.
[13]  A. M. Forrester, C. Grabher, E. R. Mcbride et al., “NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis,” British Journal of Haematology, vol. 155, no. 2, pp. 167–181, 2011.
[14]  M. L. Kalev-Zylinska, J. A. Horsfield, M. V. C. Flores et al., “Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX-1-CBF2T1 transgene advances a model for studies of leukemogenesis,” Development, vol. 129, no. 8, pp. 2015–2030, 2002.
[15]  S. M. N. Onnebo, M. M. Condron, D. O. McPhee, G. J. Lieschke, and A. C. Ward, “Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion,” Experimental Hematology, vol. 33, no. 2, pp. 182–188, 2005.
[16]  S. W. Park, J. M. Davison, J. Rhee, R. H. Hruban, A. Maitra, and S. D. Leach, “Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas,” Gastroenterology, vol. 134, no. 7, pp. 2080–2090, 2008.
[17]  A. T. Nguyen, A. Emelyanov, C. H. Koh, et al., “A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish,” Disease Models & Mechanisms, vol. 4, pp. 801–813, 2011.
[18]  E. E. Patton and L. I. Zon, “Taking human cancer genes to the fish: a transgenic model of melanoma in zebrafish,” Zebrafish, vol. 1, no. 4, pp. 363–368, 2005.
[19]  C. Santoriello, E. Gennaro, V. Anelli et al., “Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish,” PloS ONE, vol. 5, no. 12, Article ID e15170, 2010.
[20]  M. Dovey, R. M. White, and L. I. Zon, “Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish,” Zebrafish, vol. 6, no. 4, pp. 397–404, 2009.
[21]  D. M. Langenau, M. D. Keefe, N. Y. Storer et al., “Effects of RAS on the genesis of embryonal rhabdomyosarcoma,” Genes and Development, vol. 21, no. 11, pp. 1382–1395, 2007.
[22]  D. M. Langenau, M. D. Keefe, N. Y. Storer et al., “Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic zebrafish,” Oncogene, vol. 27, no. 30, pp. 4242–4248, 2008.
[23]  A. C. H. Smith, A. R. Raimondi, C. D. Salthouse et al., “High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia,” Blood, vol. 115, no. 16, pp. 3296–3303, 2010.
[24]  J. S. Blackburn, S. Liu, A. R. Raimondi, M. S. Ignatius, C. D. Salthouse, and D. M. Langenau, “High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope,” Nature Protocols, vol. 6, no. 2, pp. 229–241, 2011.
[25]  D. Traver, B. H. Paw, K. D. Poss, W. T. Penberthy, S. Lin, and L. I. Zon, “Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants,” Nature Immunology, vol. 4, no. 12, pp. 1238–1246, 2003.
[26]  R. M. White, A. Sessa, C. Burke et al., “Transparent adult zebrafish as a tool for in vivo transplantation analysis,” Cell Stem Cell, vol. 2, no. 2, pp. 183–189, 2008.
[27]  L. Zhang, C. Alt, P. Li, R. M. White, and L. I. Zon, “An optical platform for cell tracking in adult zebrafish,” Cytometry Part A, vol. 81, pp. 176–182.
[28]  D. Traver, A. Winzeler, H. M. Stern et al., “Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation,” Blood, vol. 104, no. 5, pp. 1298–1305, 2004.
[29]  I. V. Mizgireuv and S. Y. Revskoy, “Transplantable tumor lines generated in clonal zebrafish,” Cancer Research, vol. 66, no. 6, pp. 3120–3125, 2006.
[30]  I. Mizgirev and S. Revskoy, “Generation of clonal zebrafish lines and transplantable hepatic tumors,” Nature Protocols, vol. 5, no. 3, pp. 383–394, 2010.
[31]  I. V. Mizgirev and S. Revskoy, “A new zebrafish model for experimental leukemia therapy,” Cancer Biology and Therapy, vol. 9, no. 11, pp. 895–903, 2010.
[32]  C. Hall, M. Flores, T. Storm, K. Crosier, and P. Crosier, “The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish,” BMC Developmental Biology, vol. 7, article 42, 2007.
[33]  X. Y. Zhang and A. R. F. Rodaway, “SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis,” Developmental Biology, vol. 307, no. 2, pp. 179–194, 2007.
[34]  M. J. Redd, G. Kelly, G. Dunn, M. Way, and P. Martin, “Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation,” Cell Motility and the Cytoskeleton, vol. 63, no. 7, pp. 415–422, 2006.
[35]  E. Murayama, K. Kissa, A. Zapata et al., “Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development,” Immunity, vol. 25, no. 6, pp. 963–975, 2006.
[36]  J. Y. Bertrand, A. D. Kim, S. Teng, and D. Traver, “CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis,” Development, vol. 135, no. 10, pp. 1853–1862, 2008.
[37]  K. Kissa, E. Murayama, A. Zapata et al., “Live imaging of emerging hematopoietic stem cells and early thymus colonization,” Blood, vol. 111, no. 3, pp. 1147–1156, 2008.
[38]  J. Y. Bertrand, N. C. Chi, B. Santoso, S. Teng, D. Y. R. Stainier, and D. Traver, “Haematopoietic stem cells derive directly from aortic endothelium during development,” Nature, vol. 464, no. 7285, pp. 108–111, 2010.
[39]  E. Y. N. Lam, C. J. Hall, P. S. Crosier, K. E. Crosier, and M. V. Flores, “Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells,” Blood, vol. 116, no. 6, pp. 909–914, 2010.
[40]  K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature, vol. 464, no. 7285, pp. 112–115, 2010.
[41]  C. Hall, M. V. Flores, K. Crosier, and P. Crosier, “Live cell imaging of zebrafish leukocytes,” Methods in Molecular Biology, vol. 546, pp. 255–271, 2009.
[42]  D. M. Langenau, A. A. Ferrando, D. Traver et al., “In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7369–7374, 2004.
[43]  P. B. Gupta, S. Mani, J. Yang, K. Hartwell, and R. A. Weinberg, “The evolving portrait of cancer metastasis,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 291–297, 2005.
[44]  D. M. Langenau, C. Jette, S. Berghmans et al., “Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish,” Blood, vol. 105, no. 8, pp. 3278–3285, 2005.
[45]  D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997.
[46]  T. Lapidot, C. Sirard, J. Vormoor et al., “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” Nature, vol. 367, no. 6464, pp. 645–648, 1994.
[47]  B. Gerby, E. Clappier, F. Armstrong et al., “Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations,” Leukemia, vol. 25, pp. 1249–1258, 2011.
[48]  E. Clappier, B. Gerby, F. Sigaux et al., “Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse,” Journal of Experimental Medicine, vol. 208, no. 4, pp. 653–661, 2011.
[49]  L. A. Rudner, K. H. Brown, K. P. Dobrinski et al., “Shared acquired genomic changes in zebrafish and human T-ALL,” Oncogene, vol. 30, pp. 4289–4296, 2011.
[50]  M. S. C. C. Ignatius , N. M. Elpek, A. Fuller et al., “in vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma,” Cancer Cell, vol. 21, no. 5, pp. 680–693, 2012.
[51]  D. P. Corkery, G. Dellaire, and J. N. Berman, “Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo,” British Journal of Haematology, vol. 153, no. 6, pp. 786–789, 2011.
[52]  A. M. Cock-Rada, S. Medjkane, N. Janski, N. Yousfi, and M. Perichon, “SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9,” Cancer Research, vol. 72, pp. 810–820, 2012.
[53]  B. E. Lally, G. A. Geiger, S. Kridel et al., “Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library,” Cancer Research, vol. 67, no. 18, pp. 8791–8799, 2007.
[54]  L. M. J. Lee, E. A. Seftor, G. Bonde, R. A. Cornell, and M. J. C. Hendrix, “The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation,” Developmental Dynamics, vol. 233, no. 4, pp. 1560–1570, 2005.
[55]  I. J. Marques, F. U. Weiss, D. H. Vlecken et al., “Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model,” BMC Cancer, vol. 9, article 128, 2009.
[56]  C. Zhao, X. Wang, Y. Zhao et al., “A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors,” PLoS ONE, vol. 6, no. 7, Article ID e21768, 2011.
[57]  S. Zhang, Z. Cao, H. Tian et al., “SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo,” Clinical Cancer Research, vol. 17, no. 13, pp. 4439–4450, 2011.
[58]  V. P. Ghotra, S. He, H. de Bont, et al., “Automated whole animal bio-imaging assay for human cancer dissemination,” PloS ONE, vol. 7, Article ID e31281, 2012.
[59]  S. He, G. E. Lamers, J. W. Beenakker, C. Cui, V. P. Ghotra, et al., “Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model,” The Journal of Pathology. In press.
[60]  A. Eguiara, O. Holgado, I. Beloqui, L. Abalde, and Y. Sanchez, “Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification,” Cell Cycle, vol. 10, pp. 3751–3757, 2011.
[61]  M. S. Ignatius and D. M. Langenau, “Fluorescent imaging of cancer in Zebrafish,” Methods in Cell Biology, vol. 105, pp. 437–459, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413