全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk?

DOI: 10.1155/2012/807682

Full-Text   Cite this paper   Add to My Lib

Abstract:

The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors. 1. Introduction The communication between signaling pathways, the so-called molecular crosstalk, plays a central role in cell biology, enabling the cell to couple the molecular functions of either near neighbors or distant cell components, with resulting synergistic or antagonistic effects and eventually appropriate biological outcomes. Among the most important cellular crosstalk events is the signaling network that couples the molecular functions of adhesion receptors of the integrin and cadherin families. Indeed, acting in concert with growth factor receptor signaling pathways, this regulatory network is fundamentally important during the entire life of all metazoans, whereas its dysfunction almost invariably leads to developmental defects and/or diseases, including genetic diseases and cancer [1]. Integrins and cadherins are the major cell-extracellular matrix (ECM) and cell-cell adhesion receptors, respectively, and represent critical determinants of tissue architecture and function both in developing and adult organisms [2, 3]. Integrins are heterodimeric transmembrane glycoproteins composed of noncovalently linked α and β subunits, which are endowed with both structural and regulatory functions. They link the ECM to several distinct cytoplasmic proteins and the actin cytoskeleton at focal adhesions, thus serving as organizing centers for the assembly of structural and regulatory protein complexes at discrete cell-matrix adhesion sites and providing a mechanically sensitive system for mechanotransduction [4]. Furthermore, often acting in concert with growth factor receptors, they provide both outside-in and inside-out transmission of signals across the plasma membrane that control a number of critical cellular processes, including adhesion, cytoskeleton remodeling, migration,

References

[1]  J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009.
[2]  R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002.
[3]  M. J. Wheelock and K. R. Johnson, “Cadherins as modulators of cellular phenotype,” Annual Review of Cell and Developmental Biology, vol. 19, pp. 207–235, 2003.
[4]  M. A. Schwartz and D. W. DeSimone, “Cell adhesion receptors in mechanotransduction,” Current Opinion in Cell Biology, vol. 20, no. 5, pp. 551–556, 2008.
[5]  K. M. Yamada and S. Even-Ram, “Integrin regulation of growth factor receptors,” Nature Cell Biology, vol. 4, no. 4, pp. E75–E76, 2002.
[6]  M. A. del Pozo, N. Balasubramanian, N. B. Alderson et al., “Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization,” Nature Cell Biology, vol. 7, no. 9, pp. 901–908, 2005.
[7]  M. Ushio-Fukai, “Compartmentalization of redox signaling through NaDPH oxidase-derived rOS,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1289–1299, 2009.
[8]  E. Dejana, “Endothelial cell-cell junctions: happy together,” Nature Reviews Molecular Cell Biology, vol. 5, no. 4, pp. 261–270, 2004.
[9]  M. Peifer and A. S. Yap, “Traffic control: p120-catenin acts as a gatekeeper to control the fate of classical cadherins in mammalian cells,” Journal of Cell Biology, vol. 163, no. 3, pp. 437–440, 2003.
[10]  F. Balzac, M. Avolio, S. Degani et al., “E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function,” Journal of Cell Science, vol. 118, no. 20, pp. 4765–4783, 2005.
[11]  Y. Fujita, G. Krause, M. Scheffner et al., “Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex,” Nature Cell Biology, vol. 4, no. 3, pp. 222–231, 2002.
[12]  T. J. C. Harris and U. Tepass, “Adherens junctions: from molecules to morphogenesis,” Nature Reviews Molecular Cell Biology, vol. 11, no. 7, pp. 502–514, 2010.
[13]  T. L. Le, A. S. Yap, and J. L. Stow, “Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics,” Journal of Cell Biology, vol. 146, no. 1, pp. 219–232, 1999.
[14]  F. Palacios, L. Price, J. Schweitzer, J. G. Collard, and C. D'Souza-Schorey, “An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration,” EMBO Journal, vol. 20, no. 17, pp. 4973–4986, 2001.
[15]  R. Palovuori, R. Sormunen, and S. Eskelinen, “Src-induced disintegration of adherens junctions of madin-darby canine kidney cells is dependent on endocytosis of cadherin and antagonized by Tiam-1,” Laboratory Investigation, vol. 83, no. 12, pp. 1901–1915, 2003.
[16]  S. Pece and J. S. Gutkind, “E-cadherin and Hakai: signalling, remodeling or destruction?” Nature Cell Biology, vol. 4, no. 4, pp. E72–E74, 2002.
[17]  S. F. Retta, F. Balzac, and M. Avolio, “Rap1: a turnabout for the crosstalk between cadherins and integrins,” European Journal of Cell Biology, vol. 85, no. 3-4, pp. 283–293, 2006.
[18]  T. D. Perez, M. Tamada, M. P. Sheetz, and W. J. Nelson, “Immediate-early signaling induced by E-cadherin engagement and adhesion,” Journal of Biological Chemistry, vol. 283, no. 8, pp. 5014–5022, 2008.
[19]  M. Smutny and A. S. Yap, “Neighborly relations: cadherins and mechanotransduction,” Journal of Cell Biology, vol. 189, no. 7, pp. 1075–1077, 2010.
[20]  D. Vestweber, A. Broermann, and D. Schulte, “Control of endothelial barrier function by regulating vascular endothelial-cadherin,” Current Opinion in Hematology, vol. 17, no. 3, pp. 230–236, 2010.
[21]  A. S. Yap and E. M. Kovacs, “Direct cadherin-activated cell signaling: a view from the plasma membrane,” Journal of Cell Biology, vol. 160, no. 1, pp. 11–16, 2003.
[22]  E. Avizienyte and M. C. Frame, “Src and FAK signalling controls adhesion fate and the epithelial-to- mesenchymal transition,” Current Opinion in Cell Biology, vol. 17, no. 5, pp. 542–547, 2005.
[23]  E. Avizienyte, A. W. Wyke, R. J. Jones et al., “Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling,” Nature Cell Biology, vol. 4, no. 8, pp. 632–638, 2002.
[24]  N. Borghi, M. Lowndes, V. Maruthamuthu, M. L. Gardel, and W. J. Nelson, “Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13324–13329, 2010.
[25]  X. Chen and B. M. Gumbiner, “Crosstalk between different adhesion molecules,” Current Opinion in Cell Biology, vol. 18, no. 5, pp. 572–578, 2006.
[26]  J. De Rooij, A. Kerstens, G. Danuser, M. A. Schwartz, and C. M. Waterman-Storer, “Integrin-dependent actomyosin contraction regulates epithelial cell scattering,” Journal of Cell Biology, vol. 171, no. 1, pp. 153–164, 2005.
[27]  T. Genda, M. Sakamoto, T. Ichida, H. Asakura, and S. Hirohashi, “Loss of cell-cell contact is induced by integrin-mediated cell-substratum adhesion in highly-motile and highly-metastatic hepatocellular carcinoma cells,” Laboratory Investigation, vol. 80, no. 3, pp. 387–394, 2000.
[28]  C. Gimond, A. Van Der Flier, S. Van Delft et al., “Induction of cell scattering by expression of β1 integrins in β1- deficient epithelial cells requires activation of members of the Rho family of GTPases and downregulation of cadherin and catenin function,” Journal of Cell Biology, vol. 147, no. 6, pp. 1325–1340, 1999.
[29]  E. Hintermann, N. Yang, D. O'Sullivan, J. M. G. Higgins, and V. Quaranta, “Integrin α6β4-erbB2 complex inhibits haptotaxis by up-regulating E-cadherin cell-cell junctions in keratinocytes,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 8004–8015, 2005.
[30]  K. J. Hodivala and F. M. Watt, “Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation,” Journal of Cell Biology, vol. 124, no. 4, pp. 589–600, 1994.
[31]  A. Huttenlocher, M. Lakonishok, M. Kinder et al., “Integrin and cadherin synergy regulates contact inhibition of migration and motile activity,” Journal of Cell Biology, vol. 141, no. 2, pp. 515–526, 1998.
[32]  Q. Lu, M. Paredes, J. Zhang, and K. S. Kosik, “Basal extracellular signal-regulated kinase activity modulates cell-cell and cell-matrix interactions,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3257–3265, 1998.
[33]  M. Marsden and D. W. DeSimone, “Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus,” Current Biology, vol. 13, no. 14, pp. 1182–1191, 2003.
[34]  C. Martinez-Rico, F. Pincet, J. P. Thiery, and S. Dufour, “Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility,” Journal of Cell Science, vol. 123, no. 5, pp. 712–722, 2010.
[35]  F. Monier-Gavelle and J. L. Duband, “Cross talk between adhesion molecules: control of N-cadherin activity by intracellular signals elicited by β1 and β3 integrins in migrating neural crest cells,” Journal of Cell Biology, vol. 137, no. 7, pp. 1663–1681, 1997.
[36]  C. M. Nelson, D. M. Pirone, J. L. Tan, and C. S. Chen, “Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA,” Molecular Biology of the Cell, vol. 15, no. 6, pp. 2943–2953, 2004.
[37]  S. F. Retta, G. Cassarà, M. D'Amato et al., “Cross talk between β1 and αV integrins: β1 affects β3 mRNA stability,” Molecular Biology of the Cell, vol. 12, no. 10, pp. 3126–3138, 2001.
[38]  C. Schreider, G. Peignon, S. Thenet, J. Chambaz, and M. Pin?on-Raymond, “Integrin-mediated functional polarization of Caco-2 cells through E-cadherin-actin complexes,” Journal of Cell Science, vol. 115, no. 3, pp. 543–552, 2002.
[39]  J. P. Thiery and J. P. Sleeman, “Complex networks orchestrate epithelial-mesenchymal transitions,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 131–142, 2006.
[40]  M. Von Schlippe, J. F. Marshall, P. Perry, M. Stone, A. J. Zhu, and I. R. Hart, “Functional interaction between E-cadherin and αv-containing integrins in carcinoma cells,” Journal of Cell Science, vol. 113, no. 3, pp. 425–437, 2000.
[41]  H. Yano, Y. Mazaki, K. Kurokawa, S. K. Hanks, M. Matsuda, and H. Sabe, “Roles played by a subset of integrin signaling molecules in cadherin-based cell-cell adhesion,” Journal of Cell Biology, vol. 166, no. 2, pp. 283–295, 2004.
[42]  W. T. Arthur, N. K. Noren, and K. Burridge, “Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion,” Biological Research, vol. 35, no. 2, pp. 239–246, 2002.
[43]  S. Kümper and A. J. Ridley, “P120ctn and P-cadherin but not E-cadherin regulate cell motility and invasion of DU145 prostate cancer cells,” PLoS One, vol. 5, no. 7, Article ID e11801, 2010.
[44]  E. Lozano, M. Betson, and V. M. M. Braga, “Tumor progression: small GTpases and loss of cell-cell adhesion,” BioEssays, vol. 25, no. 5, pp. 452–463, 2003.
[45]  O. M. Tsygankova, C. Ma, W. Tang et al., “Downregulation of Rap1GAP in human tumor cells alters cell/matrix and cell/cell adhesion,” Molecular and Cellular Biology, vol. 30, no. 13, pp. 3262–3274, 2010.
[46]  C. Arregui, P. Pathre, J. Lilien, and J. Balsamo, “The nonreceptor tyrosine kinase Fer mediates cross-talk between N-cadherin and β1-integrins,” Journal of Cell Biology, vol. 149, no. 6, pp. 1263–1273, 2000.
[47]  W. Sangrar, Y. Gao, M. Scott, P. Truesdell, and P. A. Greer, “Fer-mediated cortactin phosphorylation is associated with efficient fibroblast migration and is dependent on reactive oxygen species generation during integrin-mediated cell adhesion,” Molecular and Cellular Biology, vol. 27, no. 17, pp. 6140–6152, 2007.
[48]  Z. Borok, “Role for α3 integrin in EMT and pulmonary fibrosis,” Journal of Clinical Investigation, vol. 119, no. 1, pp. 7–10, 2009.
[49]  Y. Kim, M. C. Kugler, Y. Wei et al., “Integrin α3β1-dependent β-catenin phosphorylation links epithelial smad signaling to cell contacts,” Journal of Cell Biology, vol. 184, no. 2, pp. 309–322, 2009.
[50]  H. Ogita and Y. Takai, “Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule,” International Review of Cytology, vol. 265, pp. 1–54, 2008.
[51]  J. Tsai and L. Kam, “Rigidity-dependent cross talk between integrin and cadherin signaling,” Biophysical Journal, vol. 96, no. 6, pp. L39–L41, 2009.
[52]  S. Chrissobolis and F. M. Faraci, “The role of oxidative stress and NADPH oxidase in cerebrovascular disease,” Trends in Molecular Medicine, vol. 14, no. 11, pp. 495–502, 2008.
[53]  A. Fortu?o, G. San José, M. U. Moreno, J. Díez, and G. Zalba, “Oxidative stress and vascular remodelling,” Experimental Physiology, vol. 90, no. 4, pp. 457–462, 2005.
[54]  A. A. Miller, G. R. Drummond, and C. G. Sobey, “Reactive oxygen species in the cerebral circulation: are they all bad?” Antioxidants and Redox Signaling, vol. 8, no. 7-8, pp. 1113–1120, 2006.
[55]  M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007.
[56]  J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003.
[57]  H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” Journal of Applied Physiology, vol. 100, no. 1, pp. 328–335, 2006.
[58]  C. Iadecola, L. Park, and C. Capone, “Threats to the mind: aging, amyloid, and hypertension,” Stroke, vol. 40, no. 3, pp. S40–S44, 2009.
[59]  F. M. Faraci and S. P. Didion, “Vascular protection: superoxide dismutase isoforms in the vessel wall,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 8, pp. 1367–1373, 2004.
[60]  H. Girouard, L. Park, J. Anrather, P. Zhou, and C. Iadecola, “Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 303–309, 2007.
[61]  P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007.
[62]  B. M. Babior, “Oxygen dependent microbial killing by phagocytes. (Second of two parts),” New England Journal of Medicine, vol. 298, no. 13, pp. 721–725, 1978.
[63]  B. M. Babior, “NADPH oxidase,” Current Opinion in Immunology, vol. 16, no. 1, pp. 42–47, 2004.
[64]  D. Gregg, D. D. De Carvalho, and H. Kovacic, “Integrins and coagulation: a role for ROS/Redox signaling?” Antioxidants and Redox Signaling, vol. 6, no. 4, pp. 757–764, 2004.
[65]  H. P. Monteiro, R. J. Arai, and L. R. Travassos, “Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling,” Antioxidants and Redox Signaling, vol. 10, no. 5, pp. 843–889, 2008.
[66]  H. Liu, R. Colavitti, I. I. Rovira, and T. Finkel, “Redox-dependent transcriptional regulation,” Circulation Research, vol. 97, no. 10, pp. 967–974, 2005.
[67]  H. J. Forman, J. M. Fukuto, and M. Torres, “Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers,” American Journal of Physiology, vol. 287, no. 2, pp. C246–C256, 2004.
[68]  P. Chiarugi and T. Fiaschi, “Redox signalling in anchorage-dependent cell growth,” Cellular Signalling, vol. 19, no. 4, pp. 672–682, 2007.
[69]  F. Kheradmand, E. Werner, P. Tremble, M. Symons, and Z. Werb, “Role of rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change,” Science, vol. 280, no. 5365, pp. 898–902, 1998.
[70]  M. L. Taddei, M. Parri, T. Mello et al., “Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species,” Antioxidants and Redox Signaling, vol. 9, no. 4, pp. 469–481, 2007.
[71]  E. Werner and Z. Werb, “Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases,” Journal of Cell Biology, vol. 158, no. 2, pp. 357–368, 2002.
[72]  P. Chiarugi, G. Pani, E. Giannoni et al., “Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion,” Journal of Cell Biology, vol. 161, no. 5, pp. 933–944, 2003.
[73]  S. Honoré, H. Kovacic, V. Pichard, C. Briand, and J. B. Rognoni, “α2β1-Integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): implication of NADPH oxidase-dependent production of ROS,” Experimental Cell Research, vol. 285, no. 1, pp. 59–71, 2003.
[74]  O. J. Broom, R. Massoumi, and A. Sj?lander, “α2β1 integrin signalling enhances cyclooxygenase-2 expression in intestinal epithelial cells,” Journal of Cellular Physiology, vol. 209, no. 3, pp. 950–958, 2006.
[75]  M. P. Peppelenbosch, R. G. Qiu, A. M. M. De Vries-Smits et al., “Rac mediates growth factor-induced arachidonic acid release,” Cell, vol. 81, no. 6, pp. 849–856, 1995.
[76]  C. H. Woo, Y. W. Eom, M. H. Yoo et al., “Tumor necrosis factor-α generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade,” Journal of Biological Chemistry, vol. 275, no. 41, pp. 32357–32362, 2000.
[77]  R. Wu, S. J. Coniglio, A. Chan, M. H. Symons, and B. M. Steinberg, “Up-regulation of Rac1 by epidermal growth factor mediates COX-2 expression in recurrent respiratory papillomas,” Molecular Medicine, vol. 13, no. 3-4, pp. 143–150, 2007.
[78]  B. L. Seung, H. B. In, S. B. Yun, and H. D. Um, “Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 36228–36235, 2006.
[79]  P. Chiarugi, “From anchorage dependent proliferation to survival: lessons from redox signalling,” IUBMB Life, vol. 60, no. 5, pp. 301–307, 2008.
[80]  S. F. Retta, S. T. Barry, D. R. Critchley, P. Defilippi, L. Silengo, and G. Tarone, “Focal adhesion and stress fiber formation is regulated by tyrosine phosphatase activity,” Experimental Cell Research, vol. 229, no. 2, pp. 307–317, 1996.
[81]  C. M. L. Beckers, V. W. M. Van Hinsbergh, and G. P. Van Nieuw Amerongen, “Driving Rho GTPase activity in endothelial cells regulates barrier integrity,” Thrombosis and Haemostasis, vol. 103, no. 1, pp. 40–55, 2010.
[82]  R. E. Clempus and K. K. Griendling, “Reactive oxygen species signaling in vascular smooth muscle cells,” Cardiovascular Research, vol. 71, no. 2, pp. 216–225, 2006.
[83]  J. Heo, “Redox control of GTPases: from molecular mechanisms to functional significance in health and disease,” Antioxidants and Redox Signaling, vol. 14, no. 4, pp. 689–724, 2011.
[84]  A. Aghajanian, E. S. Wittchen, S. L. Campbell, and K. Burridge, “Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif,” PloS One, vol. 4, no. 11, article e8045, 2009.
[85]  E. Caron, “Rac signalling: a radical view,” Nature Cell Biology, vol. 5, no. 3, pp. 185–187, 2003.
[86]  K. Chen, S. E. Craige, and J. F. Keaney Jr., “Downstream targets and intracellular compartmentalization in Nox signaling,” Antioxidants and Redox Signaling, vol. 11, no. 10, pp. 2467–2480, 2009.
[87]  J. Heo, K. W. Raines, V. Mocanu, and S. L. Campbell, “Redox regulation of RhoA,” Biochemistry, vol. 45, no. 48, pp. 14481–14489, 2006.
[88]  A. S. Nimnual, L. J. Taylor, and D. Bar-Sagi, “Redox-dependent downregulation of Rho by Rac,” Nature Cell Biology, vol. 5, no. 3, pp. 236–241, 2003.
[89]  J. Heo and S. L. Campbell, “Mechanism of redox-mediated guanine nucleotide exchange on redox-active Rho GTPases,” Journal of Biological Chemistry, vol. 280, no. 35, pp. 31003–31010, 2005.
[90]  L. Jin, Z. Ying, and R. C. Webb, “Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta,” American Journal of Physiology, vol. 287, no. 4, pp. H1495–H1500, 2004.
[91]  E.-Y. Moon, J.-H. Lee, J.-W. Lee, J.-H. Song, and S. Pyo, “ROS/Epac1-mediated Rap1/NF-kappaB activation is required for the expression of BAFF in Raw264.7 murine macrophages,” Cellular Signalling, vol. 23, no. 9, pp. 1479–1488, 2011.
[92]  K. H. Han, S. Lim, J. Ryu et al., “CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages,” Cardiovascular Research, vol. 84, no. 3, pp. 378–386, 2009.
[93]  P. H. J. Remans, S. I. Gringhuis, J. M. Van Laar et al., “Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes,” Journal of Immunology, vol. 173, no. 2, pp. 920–931, 2004.
[94]  P. H. J. Remans, C. A. Wijbrandts, M. E. Sanders et al., “CTLA-4Ig suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPase mediator of oxidative stress in rheumatoid arthritis T cells,” Arthritis and Rheumatism, vol. 54, no. 10, pp. 3135–3143, 2006.
[95]  J. Inumaru, O. Nagano, E. Takahashi et al., “Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress,” Genes to Cells, vol. 14, no. 6, pp. 703–716, 2009.
[96]  E. Monaghan-Benson and K. Burridge, “The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species,” Journal of Biological Chemistry, vol. 284, no. 38, pp. 25602–25611, 2009.
[97]  O. Thews, C. Lambert, D. K. Kelleher, H. K. Biesalski, P. Vaupel, and J. Frank, “Impact of reactive oxygen species on the expression of adhesion molecules in vivo,” Advances in experimental medicine and biology, vol. 645, pp. 95–100, 2009.
[98]  S. van Wetering, J. D. van Buul, S. Quik et al., “Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells,” Journal of Cell Science, vol. 115, no. 9, pp. 1837–1846, 2002.
[99]  G. A. Wildenberg, M. R. Dohn, R. H. Carnahan et al., “p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho,” Cell, vol. 127, no. 5, pp. 1027–1039, 2006.
[100]  M. T. Lin, M. I. Yen, C. Y. Lin, and M. L. Kuo, “Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation,” Molecular Pharmacology, vol. 64, no. 5, pp. 1029–1036, 2003.
[101]  F. E. Nwariaku, Z. Liu, X. Zhu et al., “NADPH oxidase mediates vascular endothelial cadherin phosphorylation and endothelial dysfunction,” Blood, vol. 104, no. 10, pp. 3214–3220, 2004.
[102]  J. D. Van Buul, E. C. Anthony, M. Fernandez-Borja, K. Burridge, and P. L. Hordijk, “Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating β-catenin tyrosine phosphorylation,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21129–21136, 2005.
[103]  M. S?rby and A. ?stman, “Protein-tyrosine phosphatase-mediated decrease of epidermal growth factor and platelet-derived growth factor receptor tyrosine phosphorylation in high cell density cultures,” Journal of Biological Chemistry, vol. 271, no. 18, pp. 10963–10966, 1996.
[104]  G. Pani, R. Colavitti, B. Bedogni, R. Anzevino, S. Borrello, and T. Galeotti, “A redox signaling mechanism for density-dependent inhibition of cell growth,” Journal of Biological Chemistry, vol. 275, no. 49, pp. 38891–38899, 2000.
[105]  M. Yamaoka-Tojo, T. Tojo, H. W. Kim et al., “IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 1991–1997, 2006.
[106]  M. J. Hart, M. G. Callow, B. Souza, and P. Polakis, “IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs,” EMBO Journal, vol. 15, no. 12, pp. 2997–3005, 1996.
[107]  S. Kuroda, M. Fukata, K. Kobayashi et al., “Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1,” Journal of Biological Chemistry, vol. 271, no. 38, pp. 23363–23367, 1996.
[108]  J. M. Mataraza, M. W. Briggs, Z. Li, A. Entwistle, A. J. Ridley, and D. B. Sacks, “IQGAP1 promotes cell motility and invasion,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 41237–41245, 2003.
[109]  S. Ikeda, M. Yamaoka-Tojo, L. Hilenski et al., “IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 11, pp. 2295–2300, 2005.
[110]  M. Yamaoka-Tojo, M. Ushio-Fukai, L. Hilenski et al., “IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species-dependent endothelial migration and proliferation,” Circulation Research, vol. 95, no. 3, pp. 276–283, 2004.
[111]  S. O. Lim, J. M. Gu, M. S. Kim et al., “Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter,” Gastroenterology, vol. 135, no. 6, pp. 2128–2140.e8, 2008.
[112]  Y. Wang, G. Jin, H. Miao, J. Y. S. Li, S. Usami, and S. Chien, “Integrins regulate VE-cadherin and catenins: dependence of this regulation on Src, but not on Ras,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 6, pp. 1774–1779, 2006.
[113]  H. Li, T. C. Leung, S. Hoffman, J. Balsamo, and J. Lilien, “Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan,” Journal of Cell Biology, vol. 149, no. 6, pp. 1275–1288, 2000.
[114]  L. H. Yeh, Y. J. Park, R. J. Hansalia et al., “Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS,” American Journal of Physiology, vol. 276, no. 4, pp. C838–C847, 1999.
[115]  L. Goitre, F. Balzac, S. Degani et al., “KRIT1 regulates the homeostasis of intracellular reactive oxygen species,” PLoS One, vol. 5, no. 7, Article ID e11786, 2010.
[116]  D. T. Brandt and R. Grosse, “Get to grips: steering local actin dynamics with IQGAPs,” EMBO Reports, vol. 8, no. 11, pp. 1019–1023, 2007.
[117]  F. D. Oakley, D. Abbott, Q. Li, and J. F. Engelhardt, “Signaling components of redox active endosomes: the redoxosomes,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1313–1333, 2009.
[118]  M. Ushio-Fukai, “Localizing NADPH oxidase-derived ROS,” Science's STKE, vol. 2006, no. 349, p. re8, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413