全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MAP Kinases and Prostate Cancer

DOI: 10.1155/2012/169170

Full-Text   Cite this paper   Add to My Lib

Abstract:

The three major mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK are signal transducers involved in a broad range of cell functions including survival, apoptosis, and cell differentiation. Whereas JNK and p38 have been generally linked to cell death and tumor suppression, ERK plays a prominent role in cell survival and tumor promotion, in response to a broad range of stimuli such as cytokines, growth factors, ultraviolet radiation, hypoxia, or pharmacological compounds. However, there is a growing body of evidence supporting that JNK and p38 also contribute to the development of a number of malignances. In this paper we focus on the involvement of the MAPK pathways in prostate cancer, including the less-known ERK5 pathway, as pro- or antitumor mediators, through their effects on apoptosis, survival, metastatic potential, and androgen-independent growth. 1. Introduction Mitogen-activated protein kinases (MAPKs) are serine/threonine kinases that mediate intracellular signaling associated with a variety of cellular activities including cell proliferation, differentiation, survival, death, and transformation [1, 2]. The three main members that integrate the MAPK family in mammalian cells are stress-activated protein kinase c-Jun NH2-terminal kinase (JNK), stress-activated protein kinase 2 (SAPK2, p38), and the extracellular signal-regulated protein kinases (ERK1/2, p44/p42) (Figure 1). In addition, other less-characterized MAPK pathways exist, such as the extracellular regulated kinase 5 (ERK5) pathway [3, 4] (Figure 1). Albeit with multiple exceptions, JNK and ERK5 are generally associated with apoptosis induction, while ERK1/2 are generally associated to mitogenesis, and inversely related to apoptosis [3, 4], and contradictory effects on cell death have been described to p38 [5–12]. Figure 1: Mitogen-activated protein kinase (MAPK) signaling. MAP kinases are activated by upstream kinases such as MAP kinase kinase (MAPKK), that include MEKs 1, 2, 3, 4, 5, 6, and 7. In turn, MAPKKs are activated by several different MAP kinase kinase kinases (MAPKKKs). Numerous stimulatory factors such as cytokines, mitogens, or death receptors can activate MAPKKKs. Each MAPK, depending on the stimulus and cell type, can phosphorylate different transcription factors. In mammalian cells, ERK, p38, and JNK activities are, respectively, regulated by different MAPKs cascades, which provide a link between transmembrane signaling and changes in transcription and that are activated in response to different environmental or developmental signals [4] (Figure 1). Depending

References

[1]  J. A. McCubrey, M. M. LaHair, and R. A. Franklin, “Reactive oxygen species-induced activation of the MAP kinase signaling pathways,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1775–1789, 2006.
[2]  B. N. Kholodenko and M. R. Birtwistle, “Four-dimensional dynamics of MAPK information processing systems,” Wiley Interdisciplinary Reviews. Systems Biology and Medicine, vol. 1, pp. 28–44, 2009.
[3]  M. Hayashi and J. D. Lee, “Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice,” Journal of Molecular Medicine, vol. 82, no. 12, pp. 800–808, 2004.
[4]  M. R. Junttila, S. P. Li, and J. Westermarck, “Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival,” FASEB Journal, vol. 22, no. 4, pp. 954–965, 2008.
[5]  K. Shimada, M. Nakamura, E. Ishida, and N. Konishi, “Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer,” Histology and Histopathology, vol. 21, no. 4–6, pp. 415–422, 2006.
[6]  S. S. Joo and Y. M. Yoo, “Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer,” Journal of Pineal Research, vol. 47, no. 1, pp. 8–14, 2009.
[7]  P. K. Vayalil, A. Mittal, and S. K. Katiyar, “Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B,” Carcinogenesis, vol. 25, no. 6, pp. 987–995, 2004.
[8]  Y. X. Zhang and C. Z. Kong, “The role of mitogen-activated protein kinase cascades in inhibition of proliferation in human prostate carcinoma cells by raloxifene: an in vitro experiment,” Zhonghua Yi Xue Za Zhi, vol. 88, no. 4, pp. 271–275, 2008.
[9]  F. S. Khwaja, E. J. Quann, N. Pattabiraman, S. Wynne, and D. Djakiew, “Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells,” Molecular Cancer Therapeutics, vol. 7, no. 11, pp. 3539–3545, 2008.
[10]  H. L. Chang, Y. C. Wu, J. H. Su, Y. T. Yeh, and S. S. F. Yuan, “Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 3, pp. 841–849, 2008.
[11]  M. Ricote, I. García-Tu?ón, B. Fraile et al., “P38 MAPK protects against TNF-α-provoked apoptosis in LNCaP prostatic cancer cells,” Apoptosis, vol. 11, no. 11, pp. 1969–1975, 2006.
[12]  G. Rodríguez-Berriguete, B. Fraile, R. Paniagua, P. Aller, and M. Royuela, “Expression of NF-κB-related proteins and their modulation during TNF-α-provoked apoptosis in prostate cancer cells,” submitted to Prostate.
[13]  R. J. Davis, “Signal transduction by the JNK group of MAP kinases,” Cell, vol. 103, no. 2, pp. 239–252, 2000.
[14]  E. K. Kim and E. J. Choi, “Pathological roles of MAPK signaling pathways in human diseases,” Biochimica et Biophysica Acta, vol. 1802, no. 4, pp. 396–405, 2010.
[15]  A. S. Dhillon, S. Hagan, O. Rath, and W. Kolch, “MAP kinase signalling pathways in cancer,” Oncogene, vol. 26, no. 22, pp. 3279–3290, 2007.
[16]  B. B. Ancrile, K. M. O'Hayer, and C. M. Counter, “Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics,” Molecular Interventions, vol. 8, no. 1, pp. 22–27, 2008.
[17]  L. E. Heasley and S. Y. Han, “JNK regulation of oncogenesis,” Molecules and Cells, vol. 21, no. 2, pp. 167–173, 2006.
[18]  B. Derijard, M. Hibi, I. H. Wu et al., “JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain,” Cell, vol. 76, no. 6, pp. 1025–1037, 1994.
[19]  M. A. Bogoyevitch, K. R. W. Ngoei, T. T. Zhao, Y. Y. C. Yeap, and D. C. H. Ng, “c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges,” Biochimica et Biophysica Acta, vol. 1804, no. 3, pp. 463–475, 2010.
[20]  A. M. Bode and Z. Dong, “The functional contrariety of JNK,” Molecular Carcinogenesis, vol. 46, no. 8, pp. 591–598, 2007.
[21]  H. Khalaf, J. Jass, and P. E. Olsson, “Differential cytokine regulation by NF-kappaB and AP-1 in Jurkat T-cells,” BMC Immunology, vol. 11, article 26, 2010.
[22]  F. De Graeve, A. Bahr, K. T. Sabapathy et al., “Role of the ATFa/JNK2 complex in Jun activation,” Oncogene, vol. 18, no. 23, pp. 3491–3500, 1999.
[23]  I. Sanchez, R. T. Hughes, B. J. Mayer et al., “Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-jun,” Nature, vol. 372, no. 6508, pp. 794–800, 1994.
[24]  S. Lawler, Y. Fleming, M. Goedert, and P. Cohen, “Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro,” Current Biology, vol. 8, no. 25, pp. 1387–1390, 1998.
[25]  Y. Fleming, C. G. Armstrong, N. Morrice, A. Paterson, M. Goedert, and P. Cohen, “Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7,” Biochemical Journal, vol. 352, no. 1, pp. 145–154, 2000.
[26]  T. Wada, K. Nakagawa, T. Watanabe et al., “Impaired synergistic activation of stress-activated protein kinase SAPK/JNK in mouse embryonic stem cells lacking SEK1/MKK4,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 30892–30897, 2001.
[27]  X. Wang, B. Nadarajah, A. C. Robinson et al., “Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death,” Molecular and Cellular Biology, vol. 27, no. 22, pp. 7935–7946, 2007.
[28]  C. Tournier, C. Dong, T. K. Turner, S. N. Jones, R. A. Flavell, and R. J. Davis, “MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines,” Genes and Development, vol. 15, no. 11, pp. 1419–1426, 2001.
[29]  A. G. Turjanski, J. P. Vaqué, and J. S. Gutkind, “MAP kinases and the control of nuclear events,” Oncogene, vol. 26, no. 22, pp. 3240–3253, 2007.
[30]  M. Royuela, M. I. Arenas, F. R. Bethencourt, B. Fraile, and R. Paniagua, “Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate,” Human Pathology, vol. 33, no. 3, pp. 299–306, 2002.
[31]  J. Meshki, M. C. Caino, V. A. von Burstin, E. Griner, and M. G. Kazanietz, “Regulation of prostate cancer cell survival by protein kinase Cε involves bad phosphorylation and modulation of the TNFα/JNK pathway,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26033–26040, 2010.
[32]  H. Y. Wang, Z. Cheng, and C. C. Malbon, “Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer,” Cancer Letters, vol. 191, no. 2, pp. 229–237, 2003.
[33]  J. Wang, I. Kuiatse, A. V. Lee, J. Pan, A. Giuliano, and X. Cui, “Sustained c-Jun-NH2-kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation,” Molecular Cancer Research, vol. 8, no. 2, pp. 266–277, 2010.
[34]  G. H. Su, W. Hilgers, M. C. Shekher et al., “Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene,” Cancer Research, vol. 58, no. 11, pp. 2339–2342, 1998.
[35]  J. J. Lee, J. H. Lee, Y. G. Ko, S. I. Hong, and J. S. Lee, “Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species,” Oncogene, vol. 29, no. 4, pp. 561–575, 2010.
[36]  O. Potapova, M. Gorospe, F. Bost et al., “c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells,” Journal of Biological Chemistry, vol. 275, no. 32, pp. 24767–24775, 2000.
[37]  N. Chen, M. Nomura, Q. B. She et al., “Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice,” Cancer Research, vol. 61, no. 10, pp. 3908–3912, 2001.
[38]  Q. B. She, N. Chen, A. M. Bode, R. A. Flavell, and Z. Dong, “Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate,” Cancer Research, vol. 62, no. 5, pp. 1343–1348, 2002.
[39]  H. Takahashi, H. Ogata, R. Nishigaki, D. H. Broide, and M. Karin, “Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation,” Cancer Cell, vol. 17, no. 1, pp. 89–97, 2010.
[40]  C. Magi-Galluzzi, R. Mishra, M. Fiorentino et al., “Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis,” Laboratory Investigation, vol. 76, no. 1, pp. 37–51, 1997.
[41]  A. R. Uzgare, P. J. Kaplan, and N. M. Greenberg, “Differential expression and/or activation of p38MAPK, erk1/2, and jnk during the initiation and progression of prostate cancer,” Prostate, vol. 55, no. 2, pp. 128–139, 2003.
[42]  R. L. Grubb, J. Deng, P. A. Pinto et al., “Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures,” Journal of Proteome Research, vol. 8, no. 6, pp. 3044–3054, 2009.
[43]  W. N. Yap, P. N. Chang, H. Y. Han et al., “γ-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways,” The British Journal of Cancer, vol. 99, no. 11, pp. 1832–1841, 2008.
[44]  J. Watanabe, H. Nishiyama, Y. Matsui et al., “Dicoumarol potentiates cisplatin-induced apoptosis mediated by c-Jun N-terminal kinase in p53 wild-type urogenital cancer cell lines,” Oncogene, vol. 25, no. 17, pp. 2500–2508, 2006.
[45]  W. L. Chang, C. S. Chang, P. C. Chiang et al., “2-Phenyl-5-(pyrrolidin-1-yl)-1-(3,4,5-trimethoxybenzyl)-1H-benzimidazole, a benzimidazole derivative, inhibits growth of human prostate cancer cells by affecting tubulin and c-Jun N-terminal kinase,” The British Journal of Pharmacology, vol. 160, no. 7, pp. 1677–1689, 2010.
[46]  Y. R. Chen, J. Han, R. Kori, A. N. Tony Kong, and T. H. Tan, “Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39334–39342, 2002.
[47]  C. Xu, G. Shen, X. Yuan et al., “ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells,” Carcinogenesis, vol. 27, no. 3, pp. 437–445, 2006.
[48]  P. I. Lorenzo and F. Saatcioglu, “Inhibition of apoptosis in prostate cancer cells by androgens is mediated through downregulation of c-Jun N-terminal kinase activation,” Neoplasia, vol. 10, no. 5, pp. 418–428, 2008.
[49]  J. Antosiewicz, W. Ziolkowski, J. J. Kaczor, and A. Herman-Antosiewicz, “Tumor necrosis factor-α-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin ? degradation and elevation of labile iron pool,” Free Radical Biology and Medicine, vol. 43, no. 2, pp. 265–270, 2007.
[50]  A. M. Sánchez, S. Malagarie-Cazenave, N. Olea, D. Vara, A. Chiloeches, and I. Díaz-Laviada, “Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation,” Apoptosis, vol. 12, no. 11, pp. 2013–2024, 2007.
[51]  S. V. Singh, S. Choi, Y. Zeng, E. R. Hahm, and D. Xiao, “Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate dependent activation of c-Jun NH2-terminal kinase,” Cancer Research, vol. 67, no. 15, pp. 7439–7449, 2007.
[52]  H. Y. Hong and B. C. Kim, “Mixed lineage kinase 3 connects reactive oxygen species to c-Jun NH2-terminal kinase-induced mitochondrial apoptosis in genipin-treated PC3 human prostate cancer cells,” Biochemical and Biophysical Research Communications, vol. 362, no. 2, pp. 307–312, 2007.
[53]  S. Yang, M. Lim, L. K. Pham et al., “Bone morphogenetic protein 7 protects prostate cancer cells from stress-induced apoptosis via both Smad and c-Jun NH2-terminal kinase pathways,” Cancer Research, vol. 66, no. 8, pp. 4285–4290, 2006.
[54]  J. F. Curtin and T. G. Cotter, “JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17090–17100, 2004.
[55]  H. Yun, H. S. Kim, S. Lee et al., “AMP kinase signaling determines whether c-Jun N-terminal kinase promotes survival or apoptosis during glucose deprivation,” Carcinogenesis, vol. 30, no. 3, pp. 529–537, 2009.
[56]  G. T. Kwon, H. J. Cho, W. Y. Chung, K. K. Park, A. Moon, and J. H. Y. Park, “Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling,” Journal of Nutritional Biochemistry, vol. 20, no. 9, pp. 663–676, 2009.
[57]  S. H. Hung, K. H. Shen, C. H. Wu, C. L. Liu, and Y. W. Shih, “α-mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway,” Journal of Agricultural and Food Chemistry, vol. 57, no. 4, pp. 1291–1298, 2009.
[58]  C. S. Chien, K. H. Shen, J. S. Huang, S. C. Ko, and Y. W. Shih, “Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells,” Molecular and Cellular Biochemistry, vol. 333, no. 1-2, pp. 169–180, 2010.
[59]  J. Raingeaud, S. Gupta, J. S. Rogers et al., “Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7420–7426, 1995.
[60]  L. Hui, L. Bakiri, E. Stepniak, and E. F. Wagner, “p38α: a suppressor of cell proliferation and tumorigenesis,” Cell Cycle, vol. 6, no. 20, pp. 2429–2433, 2007.
[61]  T. M. Thornton and M. Rincon, “Non-classical p38 map kinase functions: cell cycle checkpoints and survival,” International Journal of Biological Sciences, vol. 5, no. 1, pp. 44–51, 2009.
[62]  Y. Jiang, Z. Li, E. M. Schwarz et al., “Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection,” Journal of Biological Chemistry, vol. 272, no. 17, pp. 11096–11102, 1997.
[63]  X. S. Wang, K. Diener, C. L. Manthey et al., “Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase,” Journal of Biological Chemistry, vol. 272, no. 38, pp. 23668–23674, 1997.
[64]  Y. Feng, J. Wen, and C. C. Chang, “p38 mitogen-activated protein kinase and hematologic malignancies,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 11, pp. 1850–1856, 2009.
[65]  J. Whyte, O. Bergin, A. Bianchi, S. McNally, and F. Martin, “Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development,” Breast Cancer Research, vol. 11, no. 5, p. 209, 2009.
[66]  M. Zhao, L. New, V. V. Kravchenko et al., “Regulation of the MEF2 family of transcription factors by p38,” Molecular and Cellular Biology, vol. 19, no. 1, pp. 21–30, 1999.
[67]  M. Royuela, G. Rodríguez-Berriguete, B. Fraile, and R. Paniagua, “TNF-α/IL-1/NF-κB transduction pathway in human cancer prostate,” Histology and Histopathology, vol. 23, no. 10, pp. 1279–1290, 2008.
[68]  C. D. Wood, T. M. Thornton, G. Sabio, R. A. Davis, and M. Rincon, “Nuclear localization of p38 MAPK in response to DNA damage,” International Journal of Biological Sciences, vol. 5, no. 5, pp. 428–437, 2009.
[69]  B. Zheng, P. Flumara, Y. V. Li et al., “MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival,” Blood, vol. 102, no. 3, pp. 1019–1027, 2003.
[70]  M. Ricote, I. García-Tu?ón, F. Bethencourt et al., “The p38 transduction pathway in prostatic neoplasia,” Journal of Pathology, vol. 208, no. 3, pp. 401–407, 2006.
[71]  X. Guo, N. Ma, J. Wang et al., “Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells,” BMC cancer, vol. 8, p. 375, 2008.
[72]  C. Zhang, H. Zhu, X. Yang et al., “P53 and p38 MAPK pathways are involved in MONCPT-induced cell cycle G2/M arrest in human non-small cell lung cancer A549,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 3, pp. 437–445, 2010.
[73]  D. L. Lin, M. C. Whitney, Z. Yao, and E. T. Keller, “Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression,” Clinical Cancer Research, vol. 7, no. 6, pp. 1773–1781, 2001.
[74]  L. Khandrika, R. Lieberman, S. Koul et al., “Hypoxia-associated p38 mitogen-activated protein kinase-mediated androgen receptor activation and increased HIF-1α levels contribute to emergence of an aggressive phenotype in prostate cancer,” Oncogene, vol. 28, no. 9, pp. 1248–1260, 2009.
[75]  X. Huang, S. Chen, L. Xu et al., “Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells,” Cancer Research, vol. 65, no. 8, pp. 3470–3478, 2005.
[76]  K. H. Shen, S. H. Hung, L. T. Yin et al., “Acacetin, a flavonoid, inhibits the invasion and migration of human prostate cancer DU145 cells via inactivation of the p38 MAPK signaling pathway,” Molecular and Cellular Biochemistry, vol. 333, no. 1-2, pp. 279–291, 2010.
[77]  L. Xu, Y. Ding, W. J. Catalona et al., “MEK4 function, genistein treatment, and invasion of human prostate cancer cells,” Journal of the National Cancer Institute, vol. 101, no. 16, pp. 1141–1155, 2009.
[78]  C. H. Tang and M. E. Lu, “Adiponectin increases motility of human prostate cancer cells via AdipoR, p38, AMPK, and NF-κB pathways,” Prostate, vol. 69, no. 16, pp. 1781–1789, 2009.
[79]  T. Hunter, “Signaling—2000 and beyond,” Cell, vol. 100, no. 1, pp. 113–127, 2000.
[80]  Y. Liu, L. Formisano, I. Savtchouk et al., “A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype,” Nature Neuroscience, vol. 13, no. 2, pp. 223–231, 2010.
[81]  R. Marais and C. J. Marshall, “Control of the ERK MAP kinase cascade by ras and raf,” Cancer Surveys, vol. 27, pp. 101–125, 1996.
[82]  S. Peng, Y. Zhang, J. Zhang, H. Wang, and B. Ren, “ERK in learning and memory: a review of recent research,” International Journal of Molecular Sciences, vol. 11, no. 1, pp. 222–232, 2010.
[83]  G. Pearson, F. Robinson, T. B. Gibson et al., “Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions,” Endocrine Reviews, vol. 22, no. 2, pp. 153–183, 2001.
[84]  G. Pagès, J. Milanini, D. E. Richard et al., “Signaling angiogenesis via p42/p44 MAP kinase cascade,” Annals of the New York Academy of Sciences, vol. 902, pp. 187–200, 2000.
[85]  E. J. Joslin, L. K. Opresko, A. Wells, H. S. Wiley, and D. A. Lauffenburger, “EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation,” Journal of Cell Science, vol. 120, no. 20, pp. 3688–3699, 2007.
[86]  D. J. Price, S. Avraham, J. Feuerstein, Y. Fu, and H. K. Avraham, “The invasive phenotype in HMT-3522 cells requires increased EGF receptor signaling through both PI 3-kinase and ERK 1,2 pathways,” Cell Communication and Adhesion, vol. 9, no. 2, pp. 87–102, 2002.
[87]  P. J. Cullen and P. J. Lockyer, “Integration of calcium and Ras signalling,” Nature Reviews Molecular Cell Biology, vol. 3, no. 5, pp. 339–348, 2002.
[88]  D. A. Eisinger and H. Ammer, “δ-opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases,” Cellular Signalling, vol. 20, pp. 2324–2331, 2008.
[89]  L. Gao, L. Chao, and J. Chao, “A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: activation of proteinase-activated receptor 1 and epidermal growth factor receptor,” Experimental Cell Research, vol. 316, no. 3, pp. 376–389, 2010.
[90]  A. Zebisch, A. P. Czernilofsky, G. Keri, J. Smigelskaite, H. Sill, and J. Troppmair, “Signaling through RAS-RAF-MEK-ERK: from basics to bedside,” Current Medicinal Chemistry, vol. 14, no. 5, pp. 601–623, 2007.
[91]  J. S. Silver and C. A. Hunter, “gp130 at the nexus of inflammation, autoimmunity, and cancer,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1145–1156, 2010.
[92]  G. Werlen, B. Hausmann, D. Naeher, and E. Palmer, “Signaling life and death in the thymus: timing is everything,” Science, vol. 299, no. 5614, pp. 1859–1863, 2003.
[93]  N. Thakur, A. Sorrentino, C. H. Heldin, and M. Landstr?m, “TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells,” Future Oncology, vol. 5, no. 1, pp. 1–3, 2009.
[94]  K. J. Wilson, J. L. Gilmore, J. Foley, M. A. Lemmon, and D. J. Riese, “Functional selectivity of EGF family peptide growth factors: implications for cancer,” Pharmacology and Therapeutics, vol. 122, no. 1, pp. 1–8, 2009.
[95]  M. P. De Miguel, M. Royuela, F. R. Bethencourt, L. Santamaria, B. Fraile, and R. Paniagua, “Immuno-expression of tumor necrosis factor-a and its receptors 1 and 2 correlates with proliferation/apoptosis equilibrium in normal, hyperplasic and carcinomatous human prostate,” Cytokine, vol. 5, pp. 535–538, 2000.
[96]  M. Royuela, M. P. De Miguel, F. R. Bethencourt, M. Sanchez-Chapado, B. Fraile, and R. Paniagua, “Transforming growth factor β1 and its receptor types I and II. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma,” Growth Factors, vol. 16, no. 2, pp. 101–110, 1998.
[97]  I. Leav, J. E. McNeal, J. Ziar, and J. Alroy, “The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions,” Human Pathology, vol. 29, no. 7, pp. 668–675, 1998.
[98]  M. R. Cardillo, E. Petrangeli, L. Perracchio, L. Salvatori, L. Ravenna, and F. Di Silverio, “Transforming growth factor-beta expression in prostate neoplasia,” Analytical & Quantitative Cytology & Histology, vol. 22, pp. 1–10, 2000.
[99]  N. Eckstein, K. Servan, L. Girard et al., “Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells,” Journal of Biological Chemistry, vol. 283, no. 2, pp. 739–750, 2008.
[100]  T. Putz, Z. Culig, I. E. Eder et al., “Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines,” Cancer Research, vol. 59, no. 1, pp. 227–233, 1999.
[101]  P. L. De Souza, M. Castillo, and C. E. Myers, “Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine,” The British Journal of Cancer, vol. 75, no. 11, pp. 1593–1600, 1997.
[102]  H. Y. Chang, H. Nishitoh, X. Yang, H. Ichijo, and D. Baltimore, “Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx,” Science, vol. 281, no. 5384, pp. 1860–1863, 1998.
[103]  M. Dews, M. Prisco, F. Peruzzi, G. Romano, A. Morrione, and R. Baserga, “Domains of the insulin-like growth factor I receptor required for the activation of extracellular signal-regulated kinases,” Endocrinology, vol. 141, no. 4, pp. 1289–1300, 2000.
[104]  G. Rodriguez-Berriguete, A. Prieto, B. Fraile, et al., “Relationship between IL-6/ERK and NF-κB: a study in normal and pathological human prostate gland (benign hyperplasia, intraepithelial neoplasia and cancer),” European Cytokine Network, vol. 21, no. 4, pp. 241–250, 2010.
[105]  J. A. McCubrey, L. S. Steelman, W. H. Chappell, et al., “Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance,” Biochim Biophys Acta, vol. 1773, pp. 1263–1284, 2007.
[106]  S. Grant, “Cotargeting survival signaling pathways in cancer,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3003–3006, 2008.
[107]  H. Mueller, N. Flury, S. Eppenberger-Castori, W. Kueng, F. David, and U. Eppenberger, “Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients,” International Journal of Cancer, vol. 89, no. 4, pp. 384–388, 2000.
[108]  S. Schubbert, K. Shannon, and G. Bollag, “Hyperactive ras in developmental disorders and cancer,” Nature Reviews Cancer, vol. 7, no. 4, pp. 295–308, 2007.
[109]  E. Halilovic and D. B. Solit, “Therapeutic strategies for inhibiting oncogenic BRAF signaling,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 419–426, 2008.
[110]  E. T. Keller, Z. Fu, K. Yeung, and M. Brennan, “Raf kinase inhibitor protein: a prostate cancer metastasis suppressor gene,” Cancer Letters, vol. 207, no. 2, pp. 131–137, 2004.
[111]  B. Wegiel, A. Bjartell, Z. Culig, and J. L. Persson, “Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival,” International Journal of Cancer, vol. 122, no. 7, pp. 1521–1529, 2008.
[112]  J. Karkera, H. Steiner, W. Li, et al., “The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study,” Prostate, vol. 71, pp. 1455–1465, 2011.
[113]  H. Steiner, S. Godoy-Tundidor, H. Rogatsch et al., “Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway,” The American Journal of Pathology, vol. 162, no. 2, pp. 655–663, 2003.
[114]  C. P. Pjaweletz, L. Charboneau, V. E. Bichsel et al., “Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front,” Oncogene, vol. 20, no. 16, pp. 1981–1989, 2001.
[115]  S. N. Malik, M. Brattain, P. M. Ghosh et al., “Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer,” Clinical Cancer Research, vol. 8, no. 4, pp. 1168–1171, 2002.
[116]  D. Gioeli, J. W. Mandell, G. R. Petroni, H. F. Frierson, and M. J. Weber, “Activation of mitogen-activated protein kinase associated with prostate cancer progression,” Cancer Research, vol. 59, no. 2, pp. 279–284, 1999.
[117]  M. E. Grossmann, H. Huang, and D. J. Tindall, “Androgen receptor signaling in androgen-refractory prostate cancer,” Journal of the National Cancer Institute, vol. 93, no. 22, pp. 1687–1697, 2001.
[118]  Y. Zhu, C. Culmsee, S. Klumpp, and J. Krieglstein, “Neuroprotection by transforming growth factor-β1 involves activation of nuclear factor-κB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways,” Neuroscience, vol. 123, no. 4, pp. 897–906, 2004.
[119]  L. F. Chu, W. T. Wang, V. K. Ghanta, C. H. Lin, Y. Y. Chiang, and C. M. Hsueh, “Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-κB signaling pathway,” Brain Research, vol. 1239, pp. 24–35, 2008.
[120]  M. Karin, “Nuclear factor-κB in cancer development and progression,” Nature, vol. 441, no. 7092, pp. 431–436, 2006.
[121]  G. Rodriguez-Berriguete, B. Fraile, F. R. de Bethencourt, et al., “Role of IAPs in prostate cancer progression: immunohistochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate,” BMC Cancer, vol. 10, p. 18, 2010.
[122]  B. B. Aggarwal, “Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-κB,” Annals of the Rheumatic Diseases, vol. 59, no. 1, pp. i6–i16, 2000.
[123]  J. D. Lee, R. J. Ulevitch, and J. Han, “Primary structure of BMK1: a new mammalian map kinase,” Biochemical and Biophysical Research Communications, vol. 213, pp. 715–724, 1995.
[124]  G. Zhou, Zhao Qin Bao, and J. E. Dixon, “Components of a new human protein kinase signal transduction pathway,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12665–12669, 1995.
[125]  Y. Kato, R. I. Tapping, S. Huang, M. H. Watson, R. J. Ulevitch, and J. D. Lee, “Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor,” Nature, vol. 395, no. 6703, pp. 713–716, 1998.
[126]  R. S. Sawhney, W. Liu, and M. G. Brattain, “A novel role of ERK5 in integrin-mediated cell adhesion and motility in cancer cells via Fak signaling,” Journal of Cellular Physiology, vol. 219, no. 1, pp. 152–161, 2009.
[127]  M. Kayahara, X. Wang, and C. Tournier, “Selective regulation of c-jun gene expression by mitogen-activated protein kinases via the 12-o-tetradecanoylphorbol-13-acetate-responsive element and myocyte enhancer factor 2 binding sites,” Molecular and Cellular Biology, vol. 25, no. 9, pp. 3784–3792, 2005.
[128]  S. Kamakura, T. Moriguchi, and E. Nishida, “Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signalling pathway to the nucleus,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26563–26571, 1999.
[129]  Y. Kato, V. V. Kravchenko, R. I. Tapping, J. Han, R. J. Ulevitch, and J. D. Lee, “BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C,” EMBO Journal, vol. 16, no. 23, pp. 7054–7066, 1997.
[130]  J. M. English, G. Pearson, R. Baer, and M. H. Cobb, “Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 3854–3860, 1998.
[131]  S. R. C. McCracken, A. Ramsay, R. Heer et al., “Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer,” Oncogene, vol. 27, no. 21, pp. 2978–2988, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413