全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Beyond Genetics in Glioma Pathways: The Ever-Increasing Crosstalk between Epigenomic and Genomic Events

DOI: 10.1155/2012/519807

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diffuse gliomas are the most frequent brain tumor in adults. This group of brain neoplasms, ranging from histologically benign to aggressive malignant forms, represents a challenge in modern neurooncology because of the diffuse infiltrative growth pattern and the inherent tendency to relapse as a more malignant tumor. Once the disease achieves the stage of glioblastoma multiforme (GBM), the prognosis of patients is dismal and the median survival time is 15 months. Exhaustive genetic analyses have revealed a variety of deregulated genetic pathways involved in DNA repair, apoptosis, cell migration/adhesion, and cell cycle. Recently, investigation of epigenetic alterations in gliomas has contributed to depict the complexity of the molecular lesions leading to these malignancies. Even though, the efficacy of the state-of-the-art form of chemotherapy in malignant gliomas with temozolomide is based on the methylation-associated silencing of the DNA repair gene MGMT. Nevertheless, the whole scenario including global DNA hypomethylation, aberrant promoter hypermethylation, histone modification, chromatin states, and the role of noncoding RNAs in gliomas has only been partially revealed. We discuss the repercussion of epigenetic alterations underlying deregulated molecular pathways in the pathogenesis and evolution of gliomas and their impact on management of patients. 1. Introducing the Challenge: The Management of Gliomas Gliomas are the most frequent primary brain tumors in adults accounting for more than 70% of all brain neoplasms and display a group of tumors with different features regarding morphology, genetic and epigenetic aberrations, and response to therapy [1]. An additional relevant feature of gliomas represents its great tendency to infiltrate into adjacent normal brain tissue. The outer border of gliomas, as observed by T1-weighted magnet resonance imaging (MRI), does not delineate the true dimension of the tumor. Moreover, tumor cells diffusely invade the normal brain and can be detected far beyond rendering this condition incurable by combined surgery, radio, and chemotherapy (Figure 1). This is more true for glioblastoma multiforme (GBM), which accounts for about 60% of all gliomas and 12–15% of all brain tumors, and it is per se the most frequent primary brain tumor [1, 2]. It is one of the most devastating and lethal forms of human cancer despite the significant efforts that have been made to unravel its molecular basis. In Europe and North America, the incidence is three new cases per 100,000 inhabitants per year (Central Brain Tumor

References

[1]  H. Ohgaki and P. Kleihues, “Genetic pathways to primary and secondary glioblastoma,” American Journal of Pathology, vol. 170, no. 5, pp. 1445–1453, 2007.
[2]  H. Ohgaki and P. Kleihues, “Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 6, pp. 479–489, 2005.
[3]  K. D. Aldape, M. F. Okcu, M. L. Bondy, and M. Wrensch, “Molecular epidemiology of glioblastoma,” Cancer Journal, vol. 9, no. 2, pp. 99–106, 2003.
[4]  A. A. Brandes, M. Ermani, U. Basso et al., “Temozolomide as a second-line systemic regimen in recurrent high-grade glioma: a phase II study,” Annals of Oncology, vol. 12, no. 2, pp. 255–257, 2001.
[5]  W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” The Lancet Oncology, vol. 7, no. 5, pp. 392–401, 2006.
[6]  T. Gorlia, M. J. van den Bent, M. E. Hegi et al., “Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3,” The Lancet Oncology, vol. 9, no. 1, pp. 29–38, 2008.
[7]  K. Watanabe, O. Tachibana, K. Sato, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas,” Brain Pathology, vol. 6, no. 3, pp. 217–224, 1996.
[8]  M. J. Riemenschneider, J. W. M. Jeuken, P. Wesseling, and G. Reifenberger, “Molecular diagnostics of gliomas: state of the art,” Acta Neuropathologica, vol. 120, no. 5, pp. 567–584, 2010.
[9]  T. Watanabe, Y. Katayama, A. Yoshino et al., “Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression,” Brain Pathology, vol. 17, no. 1, pp. 5–10, 2007.
[10]  K. Ichimura, M. B. Bolin, H. M. Goike, E. E. Schmidt, A. Moshref, and V. P. Collins, “Deregulation of the p14(ARF)/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities,” Cancer Research, vol. 60, no. 2, pp. 417–424, 2000.
[11]  V. P. Collins, “Cellular mechanisms targeted during astrocytoma progression,” Cancer Letters, vol. 188, no. 1-2, pp. 1–7, 2002.
[12]  D. N. Louis, “A molecular genetic model of astrocytoma histopathology,” Brain Pathology, vol. 7, no. 2, pp. 755–764, 1997.
[13]  H. Ohgaki, P. Dessen, B. Jourde et al., “Genetic pathways to glioblastoma: a population-based study,” Cancer Research, vol. 64, no. 19, pp. 6892–6899, 2004.
[14]  M. J. Riemenschneider, R. Büschges, M. Wolter et al., “Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification,” Cancer Research, vol. 59, no. 24, pp. 6091–6096, 1999.
[15]  R. Benjamin, J. Capparella, and A. Brown, “Classification of glioblastoma multiforme in adults by molecular genetics,” Cancer Journal, vol. 9, no. 2, pp. 82–90, 2003.
[16]  A. von Deimling, D. N. Louis, K. von Ammon et al., “Association of epidermal growth factor receptor gene amplification with loss of chromosome 10 in human glioblastoma multiforme,” Journal of Neurosurgery, vol. 77, no. 2, pp. 295–301, 1992.
[17]  A. von Deimling, D. N. Louis, and O. D. Wiestler, “Molecular pathways in the formation of gliomas,” Glia, vol. 15, no. 3, pp. 328–338, 1995.
[18]  J. Bostr?m, J. M. Cobbers, M. Wolter et al., “Mutation of the PTEN (MMAC1) tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q,” Cancer Research, vol. 58, no. 1, pp. 29–33, 1998.
[19]  M. Nakamura, T. Watanabe, U. Klangby et al., “p14ARF deletion and methylation in genetic pathways to glioblastomas,” Brain Pathology, vol. 11, no. 2, pp. 159–168, 2001.
[20]  D. W. Parsons, S. Jones, X. Zhang et al., “An integrated genomic analysis of human glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–1812, 2008.
[21]  H. Yan, D. W. Parsons, G. Jin et al., “IDH1 and IDH2 mutations in gliomas,” The New England Journal of Medicine, vol. 360, no. 8, pp. 765–773, 2009.
[22]  F. F. Lang, D. C. Miller, M. Koslow, and E. W. Newcomb, “Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors,” Journal of Neurosurgery, vol. 81, no. 3, pp. 427–436, 1994.
[23]  J. A. Kraus, M. Wenghoefer, M. C. Schmidt et al., “Long-term survival of glioblastoma multiforme: importance of histopathological reevaluation,” Journal of Neurology, vol. 247, no. 6, pp. 455–460, 2000.
[24]  B. Cadieux, T. T. Ching, S. R. VandenBerg, and J. F. Costello, “Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation,” Cancer Research, vol. 66, no. 17, pp. 8469–8476, 2006.
[25]  M. Esteller, P. G. Corn, S. B. Baylin, and J. G. Herman, “A gene hypermethylation profile of human cancer,” Cancer Research, vol. 61, no. 8, pp. 3225–3229, 2001.
[26]  A. Waha, S. Güntner, T. H. M. Huang et al., “Epigenetic silencing of the protocadherin family member PCDH-γ-A11 in astrocytomas,” Neoplasia, vol. 7, no. 3, pp. 193–199, 2005.
[27]  K. Horiguchi, Y. Tomizawa, M. Tosaka et al., “Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors,” Oncogene, vol. 22, no. 49, pp. 7862–7865, 2003.
[28]  A. R. Stone, W. Bobo, D. J. Brat, N. S. Devi, E. G. Van Meir, and P. M. Vertino, “Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma,” American Journal of Pathology, vol. 165, no. 4, pp. 1151–1161, 2004.
[29]  M. Nakamura, T. Watanabe, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C → A:T mutations of the TP53 tumor suppressor gene,” Carcinogenesis, vol. 22, no. 10, pp. 1715–1719, 2001.
[30]  M. Alaminos, V. Dávalos, S. Ropero et al., “EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma,” Cancer Research, vol. 65, no. 7, pp. 2565–2571, 2005.
[31]  B. Tews, P. Roerig, C. Hartmann et al., “Hypermethylation and transcriptional downregulation of the CITED4 gene at 1p34.2 in oligodendroglial tumours with allelic losses on 1p and 19q,” Oncogene, vol. 26, no. 34, pp. 5010–5016, 2007.
[32]  M. E. Alonso, M. J. Bello, P. Gonzalez-Gomez et al., “Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas,” Cancer Genetics and Cytogenetics, vol. 144, no. 2, pp. 134–142, 2003.
[33]  K. Uhlmann, K. Rohde, C. Zeller et al., “Distinct methylation profiles of glioma subtypes,” International Journal of Cancer, vol. 106, no. 1, pp. 52–59, 2003.
[34]  M. Tepel, P. Roerig, M. Wolter et al., “Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma,” International Journal of Cancer, vol. 123, no. 9, pp. 2080–2086, 2008.
[35]  M. Widschwendter, H. Fiegl, D. Egle et al., “Epigenetic stem cell signature in cancer,” Nature Genetics, vol. 39, no. 2, pp. 157–158, 2007.
[36]  X. D. Zhao, X. Han, J. L. Chew et al., “Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells,” Cell Stem Cell, vol. 1, no. 3, pp. 286–298, 2007.
[37]  R. M. Brena, C. Plass, and J. F. Costello, “Mining methylation for early detection of common cancers,” PLoS Medicine, vol. 3, no. 12, Article ID e479, 2006.
[38]  P. A. Jones and S. B. Baylin, “The epigenomics of cancer,” Cell, vol. 128, no. 4, pp. 683–692, 2007.
[39]  M. Esteller, “Epigenetic gene silencing in cancer: the DNA hypermethylome,” Human Molecular Genetics, vol. 16, no. 1, pp. R50–R59, 2007.
[40]  M. Esteller, “CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future,” Oncogene, vol. 21, no. 35, pp. 5427–5440, 2002.
[41]  P. A. Jones and S. B. Baylin, “The fundamental role of epigenetic events in cancer,” Nature Reviews Genetics, vol. 3, no. 6, pp. 415–428, 2002.
[42]  K. E. Bachman, J. G. Herman, P. G. Corn et al., “Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers,” Cancer Research, vol. 59, no. 4, pp. 798–802, 1999.
[43]  J. G. Herman, F. Latif, Y. Weng et al., “Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9700–9704, 1994.
[44]  J. G. Herman, A. Merlo, L. Mao et al., “Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers,” Cancer Research, vol. 55, no. 20, pp. 4525–4530, 1995.
[45]  C. Lengauer, K. W. Kinzler, and B. Vogelstein, “Genetic instabilities in human cancers,” Nature, vol. 396, no. 6712, pp. 643–649, 1998.
[46]  K. W. Kinzler and B. Vogelstein, “Cancer-susceptibility genes. Gatekeepers and caretakers,” Nature, vol. 386, no. 6627, pp. 761–763, 1997.
[47]  S. N. Thibodeau, G. Bren, and D. Schaid, “Microsatellite instability in cancer of the proximal colon,” Science, vol. 260, no. 5109, pp. 816–819, 1993.
[48]  Y. Ionov, M. A. Peinado, S. Malkhosyan, D. Shibata, and M. Perucho, “Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis,” Nature, vol. 363, no. 6429, pp. 558–561, 1993.
[49]  N. Rampino, H. Yamamoto, Y. Ionov et al., “Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype,” Science, vol. 275, no. 5302, pp. 967–969, 1997.
[50]  D. Kong, A. Suzuki, T. T. Zou et al., “PTEN1 is frequently mutated in primary endometrial carcinomas,” Nature Genetics, vol. 17, no. 2, pp. 143–144, 1997.
[51]  L. A. Aaltonen, P. Peltomaki, F. S. Leach et al., “Clues to the pathogenesis of familial colorectal cancer,” Science, vol. 260, no. 5109, pp. 812–816, 1993.
[52]  R. A. Lothe, P. Peltomaki, G. I. Meling et al., “Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history,” Cancer Research, vol. 53, no. 24, pp. 5849–5852, 1993.
[53]  B. Renault, D. Calistri, G. Buonsanti, O. Nanni, D. Amadori, and G. N. Ranzani, “Microsatellite instability and mutations of p53 and TGF-β RII genes in gastric cancer,” Human Genetics, vol. 98, no. 5, pp. 601–607, 1996.
[54]  J. K. Field, H. Kiaris, P. Howard, E. D. Vaughan, D. A. Spandidos, and A. S. Jones, “Microsatellite instability in squamous cell carcinoma of the head and neck,” British Journal of Cancer, vol. 71, no. 5, pp. 1065–1069, 1995.
[55]  R. Wooster, A. M. Cleton-Jansen, N. Collins et al., “Instability of short tandem repeats (microsatellites) in human cancers,” Nature Genetics, vol. 6, no. 2, pp. 152–156, 1994.
[56]  M. Watanabe, H. Imai, H. Kato et al., “Microsatellite instability in latent prostate cancers,” International Journal of Cancer, vol. 69, no. 5, pp. 394–397, 1996.
[57]  R. Martinez, H. K. Schackert, H. Appelt, J. Plaschke, G. Baretton, and G. Schackert, “Low-level microsatellite instability phenotype in sporadic glioblastoma multiforme,” Journal of Cancer Research and Clinical Oncology, vol. 131, no. 2, pp. 87–93, 2005.
[58]  M. E. Hegi, A. C. Diserens, T. Gorlia et al., “MGMT gene silencing and benefit from temozolomide in glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 997–1003, 2005.
[59]  A. E. Pegg, M. E. Dolan, and R. C. Moschel, “Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase,” Progress in Nucleic Acid Research and Molecular Biology, vol. 51, pp. 167–223, 1995.
[60]  M. Esteller and J. G. Herman, “Generating mutations but providing chemosensitivity: the role of O 6-methylguanine DNA methyltransferase in human cancer,” Oncogene, vol. 23, no. 1, pp. 1–8, 2004.
[61]  Cancer Genome Atlas Research Network, “Comprehensive genomic characterization defines human glioblastoma genes and core pathways,” Nature, vol. 455, no. 7216, pp. 1061–1068, 2008.
[62]  K. Friedrich, L. Lee, D. F. Leistritz et al., “WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations,” Human Genetics, vol. 128, no. 1, pp. 103–111, 2010.
[63]  H. Nakayama, “RecQ family helicases: roles as tumor suppressor proteins,” Oncogene, vol. 21, no. 58, pp. 9008–9021, 2002.
[64]  R. Agrelo, W. H. Cheng, F. Setien et al., “Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8822–8827, 2006.
[65]  C. J. Norbury and B. Zhivotovsky, “DNA damage-induced apoptosis,” Oncogene, vol. 23, no. 16, pp. 2797–2808, 2004.
[66]  D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[67]  A. R. Stone, W. Bobo, D. J. Brat, N. S. Devi, E. G. Van Meir, and P. M. Vertino, “Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma,” American Journal of Pathology, vol. 165, no. 4, pp. 1151–1161, 2004.
[68]  R. Martinez, G. Schackert, and M. Esteller, “Hypermethylation of the proapoptotic gene TMS1/ASC: prognostic importance in glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 82, no. 2, pp. 133–139, 2007.
[69]  Z. Yang, Y. Wang, J. Fang et al., “Downregulation of WIF-1 by hypermethylation in astrocytomas,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 6, pp. 418–425, 2010.
[70]  R. Martinez, J. I. Martin-Subero, V. Rohde et al., “A microarray-based DNA methylation study of glioblastoma multiforme,” Epigenetics, vol. 4, no. 4, pp. 255–264, 2009.
[71]  R. Martinez, F. Setien, C. Voelter et al., “CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme,” Carcinogenesis, vol. 28, no. 6, pp. 1264–1268, 2007.
[72]  T. Teitz, T. Wei, M. B. Valentine et al., “Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN,” Nature Medicine, vol. 6, no. 5, pp. 529–535, 2000.
[73]  T. J. Zuzak, D. F. Steinhoff, L. N. Sutton, P. C. Phillips, A. Eggert, and M. A. Grotzer, “Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma,” European Journal of Cancer, vol. 38, no. 1, pp. 83–91, 2002.
[74]  A. Rehemtulla, C. A. Hamilton, A. M. Chinnaiyan, and V. M. Dixit, “Ultraviolet radiation-induced apoptosis is mediated by activation of CD- 95 (Fas/APO-1),” Journal of Biological Chemistry, vol. 272, no. 41, pp. 25783–25786, 1997.
[75]  A. Thorburn, “Death receptor-induced cell killing,” Cellular Signalling, vol. 16, no. 2, pp. 139–144, 2004.
[76]  X. Wang, “The expanding role of mitochondria in apoptosis,” Genes and Development, vol. 15, no. 22, pp. 2922–2933, 2001.
[77]  G. Pan, J. Ni, Y. F. Wei, G. L. Yu, R. Goodwin, and V. M. Dixit, “An antagonist decoy receptor and a death domain-containing receptor for TRAIL,” Science, vol. 277, pp. 815–818, 1997.
[78]  O. B?gler, H. J. Huang, P. Kleihues, and W. K. Cavenee, “The p53 gene and its role in human brain tumors,” Glia, vol. 15, no. 3, pp. 308–327, 1995.
[79]  M. Nakamura, T. Watanabe, U. Klangby et al., “p14ARF deletion and methylation in genetic pathways to glioblastomas,” Brain Pathology, vol. 11, no. 2, pp. 159–168, 2001.
[80]  M. Nakamura, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Promoter hypermethylation of the RB1 gene in glioblastomas,” Laboratory Investigation, vol. 81, no. 1, pp. 77–82, 2001.
[81]  M. Wolter, J. Reifenberger, B. Blaschke et al., “Oligodendroglial tumors frequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a), p14ARF, and CDKN2B (MTS2, p15INK4b) tumor suppressor genes,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 12, pp. 1170–1180, 2001.
[82]  J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005.
[83]  L. He, J. M. Thomson, M. T. Hemann et al., “A microRNA polycistron as a potential human oncogene,” Nature, vol. 435, no. 7043, pp. 828–833, 2005.
[84]  A. Lujambio and M. Esteller, “How epigenetics can explain human metastasis: a new role for microRNAs,” Cell Cycle, vol. 8, no. 3, pp. 377–382, 2009.
[85]  J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005.
[86]  S. A. Ciafrè, S. Galardi, A. Mangiola et al., “Extensive modulation of a set of microRNAs in primary glioblastoma,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1351–1358, 2005.
[87]  T. Papagiannakopoulos, A. Shapiro, and K. S. Kosik, “MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells,” Cancer Research, vol. 68, no. 19, pp. 8164–8172, 2008.
[88]  G. Gabriely, T. Wurdinger, S. Kesari et al., “MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators,” Molecular and Cellular Biology, vol. 28, no. 17, pp. 5369–5380, 2008.
[89]  J. Godlewski, M. O. Nowicki, A. Bronisz et al., “Targeting of the Bmi-1 oncogene/stem cell renewal factor by MicroRNA-128 inhibits glioma proliferation and self-renewal,” Cancer Research, vol. 68, no. 22, pp. 9125–9130, 2008.
[90]  J. Silber, D. A. Lim, C. Petritsch et al., “miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells,” BMC Medicine, vol. 6, article 14, 2008.
[91]  T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-coding RNAs: insights into functions,” Nature Reviews Genetics, vol. 10, no. 3, pp. 155–159, 2009.
[92]  M. Esteller, “Non-coding RNAs in human disease,” Nature Reviews Genetics, vol. 12, no. 12, pp. 861–874, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133