全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Association of Xmn I Polymorphism and Hemoglobin E Haplotypes on Postnatal Gamma Globin Gene Expression in Homozygous Hemoglobin E

DOI: 10.1155/2012/528075

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Objectives. To explore the role of cis-regulatory sequences within the β globin gene cluster at chromosome 11 on human γ globin gene expression related to Hb E allele, we analyze baseline hematological data and Hb F values together with β globin haplotypes in homozygous Hb E. Patients and Methods. 80 individuals with molecularly confirmed homozygous Hb E were analyzed for the β globin haplotypes and Xmn I polymorphism using PCR-RFLPs. 74 individuals with complete laboratory data were further studied for association analyses. Results. Eight different β globin haplotypes were found linked to Hb E alleles; three major haplotypes were (a) (III), (b) (V), and (c) (IV) accounting for 94% of Hb E chromosomes. A new haplotype (Th-1) was identified and most likely converted from the major ones. The majority of individuals had Hb F?<?5%; only 10.8% of homozygous Hb E had high Hb F (average 10.5%, range 5.8–14.3%). No association was found on a specific haplotype or Xmn I in these individuals with high Hb F, measured by alkaline denaturation. Conclusion. The cis-regulation of γ globin gene expression might not be apparent under a milder condition with lesser globin imbalance such as homozygous Hb E. 1. Introduction Beside producing abnormal variant, hemoglobin E (HbE), the G→A substitution in codon 26 (Glu→Lys) of the β-globin gene (βE) could also produce β+ thalassemia due to decreased functional HbE-mRNA, secondary to alternative splicing mechanism [1]. However, the clinical phenotype in homozygous Hb E (Hb EE) is rather asymptomatic with very mild anemia. In contrast, patients with HbE/β thalassemia have a more diverse clinical phenotype from transfusion dependent to very mild disease [2–5]. Although, understanding of clinical phenotypic diversity in patients with Hb E/β thalassemia has long been a topic of several investigations, at present, the genotype-phenotype correlation of this so-called single gene disorder remains obscure. Variation of postnatal γ globin expression and HbF production in these patients was thought to be one of the main genetic factors responsible for clinical heterogeneity found in Hb E/β thalassemia by reducing globin imbalance and ameliorating ineffective erythropoiesis. Through erythroid development, the γ globin expression was regulated by interactions between cis-acting sequences within the β globin cluster and trans-acting factors such as BCL-11A, cMYB, and TOX [1, 6–8]. The most significant genetic factor in cis associated with high HbF is Xmn I polymorphism located at ?158 upstream to the Gγ globin genes [9]. In a

References

[1]  D. J. Weatherall and J. B. Clegg, Eds., The Thassaemia Syndromes, Blackwell Science, Oxford, UK, 4th edition, 2001.
[2]  S. Fucharoen and P. Winichagoon, “Clinical and hematologic aspects of hemoglobin E β-thalassemia,” Current Opinion in Hematology, vol. 7, no. 2, pp. 106–112, 2000.
[3]  S. Fucharoen, P. Winichagoon, P. Pootrakul, A. Piankijagum, and P. Wasi, “Variable severity of Southeast Asian beta 0-thalassemia/Hb E disease,” Birth Defects Original Article Series, vol. 23, no. 5A, pp. 241–248, 1987.
[4]  S. Fucharoen, P. Ketvichit, P. Pootrakul, N. Siritanaratkul, A. Piankijagum, and P. Wasi, “Clinical manifestation of β-thalassemia/hemoglobin E disease,” Journal of Pediatric Hematology/Oncology, vol. 22, no. 6, pp. 552–557, 2000.
[5]  V. Viprakasit, V. S. Tanphaichitr, W. Chinchang, P. Sangkla, M. J. Weiss, and D. R. Higgs, “Evaluation of alpha hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients with β thalassemia,” Blood, vol. 103, no. 9, pp. 3296–3299, 2004.
[6]  V. G. Sankaran, T. F. Menne, J. Xu et al., “Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A,” Science, vol. 322, no. 5909, pp. 1839–1842, 2008.
[7]  J. Jiang, S. Best, S. Menzel et al., “cMYB is involved in the regulation of fetal hemoglobin production in adults,” Blood, vol. 108, no. 3, pp. 1077–1083, 2006.
[8]  P. Sebastiani, L. Wang, V. G. Nolan et al., “Fetal hemoglobin in sickle cell anemia: bayesian modeling of genetic associations,” American Journal of Hematology, vol. 83, no. 3, pp. 189–195, 2008.
[9]  C. Garner, T. Tatu, J. E. Reittie et al., “Genetic influences on F cells and other hematologic variables: a twin heritability study,” Blood, vol. 95, no. 1, pp. 342–346, 2000.
[10]  Q. Ma, K. Abel, O. Sripichai et al., “β-Globin gene cluster polymorphisms are strongly associated with severity of HbE/β0-thalassemia,” Clinical Genetics, vol. 72, no. 6, pp. 497–505, 2007.
[11]  G. Fucharoen, S. Fucharoen, K. Sanchaisuriya et al., “Frequency distribution and haplotypic heterogeneity of βE-globin gene among eight minority groups of northeast Thailand,” Human Heredity, vol. 53, no. 1, pp. 18–22, 2002.
[12]  P. Yongvanit, P. Sriboonlue, N. Mularlee et al., “DNA haplotypes and frameworks linked to the β-globin locus in an Austro-Asiatic population with a high prevalence of hemoglobin E,” Human Genetics, vol. 83, no. 2, pp. 171–174, 1989.
[13]  S. E. Antonarakis, S. H. Orkin, H. H. Kazazian Jr., et al., “Evidence for multiple origins of the β(E)-globin gene in Southeast Asia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 21, pp. 6608–6611, 1982.
[14]  K. Tachavanich, V. Viprakasit, W. Chinchang, W. Glomglao, P. Pung-Amritt, and V. S. Tanphaichitr, “Clinical and hematological phenotype of homozygous hemoglobin E: revisit of a benign condition with hidden reproductive risk,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 40, no. 2, pp. 306–316, 2009.
[15]  K. Betke and E. Kleihauer, “The acid elution technique and the question of the influence of membrane qualities on its results,” Annales de la Societe Belge de Medecine Tropicale, vol. 49, no. 2, pp. 151–156, 1969.
[16]  N. J. Goulden and C. G. Steward, Pediatric Hematology: Methods and Protocols, Humana Press, Totowa, NJ, USA, 2004.
[17]  M. Stephens, N. J. Smith, and P. Donnelly, “A new statistical method for haplotype reconstruction from population data,” American Journal of Human Genetics, vol. 68, no. 4, pp. 978–989, 2001.
[18]  M. Stephens and P. Donnelly, “A comparison of bayesian methods for haplotype reconstruction from population genotype data,” American Journal of Human Genetics, vol. 73, no. 5, pp. 1162–1169, 2003.
[19]  S. H. Orkin, H. H. Kazazian Jr., S. E. Antonarakis, et al., “Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster,” Nature, vol. 296, no. 5858, pp. 627–631, 1982.
[20]  R. L. Nagel and H. M. Ranney, “Genetic epidemiology of structural mutations of the β-globin gene,” Seminars in Hematology, vol. 27, no. 4, pp. 342–359, 1990.
[21]  M. A. F. El-Hazmi, A. S. Warsy, M. H. N. Addar, and Z. Babae, “Fetal haemoglobin level—effect of gender, age and haemoglobin disorders,” Molecular and Cellular Biochemistry, vol. 135, no. 2, pp. 181–186, 1994.
[22]  K. Miyoshi, Y. Kaneto, H. Kawai et al., “X-linked dominant control of F-cells in normal adult life: characterization of the Swiss type as hereditary persistence of fetal hemoglobin regulated dominantly by gene(s) on X chromosome,” Blood, vol. 72, no. 6, pp. 1854–1860, 1988.
[23]  G. J. Dover, K. D. Smith, Y. C. Chang et al., “Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2,” Blood, vol. 80, no. 3, pp. 816–824, 1992.
[24]  G. V. Ramana, G. R. Chandak, and L. Singh, “Sickle cell gene haplotypes in Relli and Thurpu Kapu populations of Andhra Pradesh,” Human Biology, vol. 72, no. 3, pp. 535–540, 2000.
[25]  S. K. Das and G. Talukder, “A review on the origin and spread of deleterious mutants of the β-globin gene in Indian populations,” HOMO—Journal of Comparative Human Biology, vol. 52, no. 2, pp. 93–109, 2001.
[26]  M. Nuinoon, W. Makarasara, T. Mushiroda et al., “A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E,” Human Genetics, vol. 127, no. 3, pp. 303–314, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413