全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydrogen Peroxide in Inflammation: Messenger, Guide, and Assassin

DOI: 10.1155/2012/541471

Full-Text   Cite this paper   Add to My Lib

Abstract:

Starting as a model for developmental genetics, embryology, and organogenesis, the zebrafish has become increasingly popular as a model organism for numerous areas of biology and biomedicine over the last decades. Within haematology, this includes studies on blood cell development and function and the intricate regulatory mechanisms within vertebrate immunity. Here, we review recent studies on the immediate mechanisms mounting an inflammatory response by in vivo analyses using the zebrafish. These recently revealed novel roles of the reactive oxygen species hydrogen peroxide that have changed our view on the initiation of a granulocytic inflammatory response. 1. Introduction The innate immune system comprises the cells and mechanisms that defend the host from infection by other organisms or damage to tissue integrity, in a nonspecific manner. This means that the cells of the innate system recognise and respond to pathogens and trauma in a generic way, but unlike the adaptive immune system, it does not confer long-lasting or protective immunity to the host. The innate immune system provides an immediate defence. A typical vertebrate immune response depends on the orchestrated motility and activity of various haematopoietic compartments and their interactions that ultimately control the magnitude of the response [1–3]. Inflammation is one of the first responses of the immune system to infection or irritation. Stimulated by factors released from injured cells, it serves to establish a physical barrier against the spread of infection. This further promotes healing of any damaged tissue following the clearance of pathogens or cell debris. Molecules produced during inflammation sensitise pain receptors, cause localised vasodilatation of blood vessels, and attract phagocytes, especially neutrophils and macrophages, which then trigger other parts of the immune system. Failure to initiate a response allows uncontrolled proliferation of invading microorganisms and severe tissue damage that may become fatal. Failure to resolve an immune response can also cause severe tissue damage, due to persistent degranulation, and may lead to chronic inflammation, which ceases to be beneficial to the host. Overall, inflammation is now recognised as a central feature of prevalent pathologies, such as atherosclerosis, cancer, asthma, thyroiditis, inflammatory bowel disease, autoimmune disease, as well as Alzheimer’s and Parkinson’s disease [4–6]. Hence, the regulation of an inflammatory response is an active field of research. New players or novel functions of old players

References

[1]  J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998.
[2]  K. Hoebe, E. Janssen, and B. Beutler, “The interface between innate and adaptive immunity,” Nature Immunology, vol. 5, no. 10, pp. 971–974, 2004.
[3]  C. N. Serhan and J. Savill, “Resolution of inflammation: the beginning programs the end,” Nature Immunology, vol. 6, no. 12, pp. 1191–1197, 2005.
[4]  L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002.
[5]  P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002.
[6]  C. L. Van Hove, T. Maes, G. F. Joos, and K. G. Tournoy, “Chronic inflammation in asthma: a contest of persistence vs resolution,” Allergy, vol. 63, no. 9, pp. 1095–1109, 2008.
[7]  K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007.
[8]  M. Rojkind, J. A. Domínguez-Rosales, N. Nieto, and P. Greenwel, “Role of hydrogen peroxide and oxidative stress in healing responses,” Cellular and Molecular Life Sciences, vol. 59, no. 11, pp. 1872–1891, 2002.
[9]  C. A. Pritsos, “Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system,” Chemico-Biological Interactions, vol. 129, no. 1-2, pp. 195–208, 2000.
[10]  A. T. Demiryürek and R. M. Wadsworth, “Superoxide in the pulmonary circulation,” Pharmacology and Therapeutics, vol. 84, no. 3, pp. 355–365, 1999.
[11]  B. T. Kawahara, M. T. Quinn, and J. D. Lambeth, “Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes,” BMC Evolutionary Biology, vol. 7, article 109, 2007.
[12]  B. Rada and T. Leto, “Oxidative innate immune defenses by Nox/Duox Family NADPH oxidases,” Contributions to Microbiology, vol. 15, pp. 164–187, 2008.
[13]  N. Driessens, S. Versteyhe, C. Ghaddhab et al., “Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ,” Endocrine-Related Cancer, vol. 16, no. 3, pp. 845–856, 2009.
[14]  T. L. Leto and M. Geiszt, “Role of Nox family NADPH oxidases in host defense,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1549–1561, 2006.
[15]  E. Owusu-Ansah, A. Yavari, S. Mandal, and U. Banerjee, “Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint,” Nature Genetics, vol. 40, no. 3, pp. 356–361, 2008.
[16]  E. Owusu-Ansah and U. Banerjee, “Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation,” Nature, vol. 461, no. 7263, pp. 537–541, 2009.
[17]  J. Li, M. Stouffs, L. Serrander et al., “The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation,” Molecular Biology of the Cell, vol. 17, no. 9, pp. 3978–3988, 2006.
[18]  S. Lange, J. Heger, G. Euler, M. Wartenberg, H. M. Piper, and H. Sauer, “Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species,” Cardiovascular Research, vol. 81, no. 1, pp. 159–168, 2009.
[19]  R. Colavitti, G. Pani, B. Bedogni et al., “Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR,” Journal of Biological Chemistry, vol. 277, no. 5, pp. 3101–3108, 2002.
[20]  K. Hensley, K. A. Robinson, S. P. Gabbita, S. Salsman, and R. A. Floyd, “Reactive oxygen species, cell signaling, and cell injury,” Free Radical Biology and Medicine, vol. 28, no. 10, pp. 1456–1462, 2000.
[21]  S. P. Gabbita, K. A. Robinson, C. A. Stewart, R. A. Floyd, and K. Hensley, “Redox regulatory mechanisms of cellular signal transduction,” Archives of Biochemistry and Biophysics, vol. 376, no. 1, pp. 1–13, 2000.
[22]  W. M. Nauseef, “Assembly of the phagocyte NADPH oxidase,” Histochemistry and Cell Biology, vol. 122, no. 4, pp. 277–291, 2004.
[23]  W. M. Nauseef, “Contributions of myeloperoxidase to proinflammatory events: more than an antimicrobial system,” International Journal of Hematology, vol. 74, no. 2, pp. 125–133, 2001.
[24]  S. J. Klebanoff, “Myeloperoxidase: friend and foe,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 598–625, 2005.
[25]  L. Pase, C. J. Nowell, and G. J. Lieschke, “In vivo real-time visualization of leukocytes and intracellular hydrogen peroxide levels during a zebrafish acute inflammation assay,” Methods in Enzymology, vol. 506, pp. 135–156, 2012.
[26]  G. Y. Chen and G. Nu?ez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010.
[27]  O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010.
[28]  P. Niethammer, C. Grabher, A. T. Look, and T. J. Mitchison, “A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish,” Nature, vol. 459, no. 7249, pp. 996–999, 2009.
[29]  C. K. Sen and S. Roy, “Redox signals in wound healing,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1348–1361, 2008.
[30]  V. V. Belousov, A. F. Fradkov, K. A. Lukyanov et al., “Genetically encoded fluorescent indicator for intracellular hydrogen peroxide,” Nature Methods, vol. 3, no. 4, pp. 281–286, 2006.
[31]  S. Moreira, B. Stramer, I. Evans, W. Wood, and P. Martin, “Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo,” Current Biology, vol. 20, no. 5, pp. 464–470, 2010.
[32]  Y. Feng, C. Santoriello, M. Mione, A. Hurlstone, and P. Martin, “Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation,” PLoS Biology, vol. 8, no. 12, Article ID e1000562, 2010.
[33]  H. Jay Forman and M. Torres, “Redox signaling in macrophages,” Molecular Aspects of Medicine, vol. 22, no. 4-5, pp. 189–216, 2001.
[34]  S. Schoonbroodt, V. Ferreira, M. Best-Belpomme et al., “Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl- terminal PEST domain of IκBα in NF-κB activation by an oxidative stress,” Journal of Immunology, vol. 164, no. 8, pp. 4292–4300, 2000.
[35]  Z. Yin, V. N. Ivanov, H. Habelhah, K. Tew, and Z. Ronai, “Glutathione S-Transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases,” Cancer Research, vol. 60, no. 15, pp. 4053–4057, 2000.
[36]  D. Tang, Y. Shi, R. Kang et al., “Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1,” Journal of Leukocyte Biology, vol. 81, no. 3, pp. 741–747, 2007.
[37]  J. S. Alexander and J. W. Elrod, “Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation,” Journal of Anatomy, vol. 200, no. 6, pp. 561–574, 2002.
[38]  J. M. Cook-Mills, “Hydrogen peroxide activation of endothelial cell-associated MMPS during VCAM-1-dependent leukocyte migration,” Cellular and Molecular Biology, vol. 52, no. 4, pp. 8–16, 2006.
[39]  S. K. Yoo, T. W. Starnes, Q. Deng, and A. Huttenlocher, “Lyn is a redox sensor that mediates leukocyte wound attraction in vivo,” Nature, vol. 480, pp. 109–112, 2011.
[40]  I. V. Klyubin, K. M. Kirpichnikova, and I. A. Gamaley, “Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils,” European Journal of Cell Biology, vol. 70, no. 4, pp. 347–351, 1996.
[41]  A. Draeger, K. Monastyrskaya, and E. B. Babiychuk, “Plasma membrane repair and cellular damage control: the annexin survival kit,” Biochemical Pharmacology, vol. 81, no. 6, pp. 703–712, 2011.
[42]  S. Rigutto, C. Hoste, H. Grasberger et al., “Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by cAMP-dependent protein kinase and protein kinase C-dependent phosphorylation,” Journal of Biological Chemistry, vol. 284, no. 11, pp. 6725–6734, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413