全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Grey Zone Lymphomas: Lymphomas with Intermediate Features

DOI: 10.1155/2012/460801

Full-Text   Cite this paper   Add to My Lib

Abstract:

The current classification of lymphoid neoplasms is based on clinical information, morphology, immunophenotype, and molecular genetic characteristics. Despite technical and scientific progress, some aggressive B-cell lymphomas with features overlapping between two different types of lymphomas remain difficult to classify. The updated 2008 World Health Organization (WHO) classification of Tumours of the Hematopoietic and Lymphoid Tissues has addressed this problem by creation of two new provisional categories of B-cell lymphomas, unclassifiable; one with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma and the second with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. We review here the diagnostic criteria of these two provisional entities and discuss new scientific findings in light of the 2008 WHO classification. 1. Introduction The current classification of lymphoid neoplasms is based on clinical information morphology, immunophenotype, and molecular genetic characteristics. Most lymphomas can be accurately classified. However, some lymphomas present with features transitional between diffuse large B-cell lymphomas (DLBCLs) and classical Hodgkin lymphoma (cHL) or DLBCL and Burkitt lymphoma (BL), and these are difficult to classify [1]. These lymphomas have been reported in the literature using different terms, such as borderline lymphomas, B-cell lymphomas unclassifiable, atypical Burkitt lymphoma, Burkitt-like lymphomas, or gray zone lymphomas. The term “Gray Zone Lymphoma” was firstly used in 1998 at the “Workshop on Hodgkin’s disease and related diseases” to designate lymphomas at the border of cHL and other entities [2]. This term was then further extended to lymphomas with overlapping features between BL and DLBCL. The 2008 updated WHO classification of Tumours of the Hematopoietic and Lymphoid Tissues proposed to assign these gray zone lymphomas to provisional categories called B-cell lymphomas unclassifiable with features intermediate between DLBCL and cHL (BCLu-DLBCL/cHL) and B-cell lymphomas unclassifiable with features intermediate between DLBCL and BL (BCLu-DLBCL/BL) [3]. The reason to create these provisional categories is to enable to collect for further studies and to maintain the “purity” of well-defined categories. This would be particularly relevant for conducting clinical studies. This paper focuses on these two provisional entities introduced in the 2008 WHO classification of Tumours of the Hematopoietic and Lymphoid Tissues. 2. B-Cell Lymphoma,

References

[1]  L. Quintanilla-Martinez, D. de Jong, A. de Mascarel et al., “Gray zones around diffuse large B cell lymphoma. Conclusions based on the workshop of the XIV meeting of the European Association for Hematopathology and the Society of Hematopathology in Bordeaux, France,” Journal of Hematopathology, vol. 2, no. 4, pp. 211–236, 2009.
[2]  T. Rudiger, E. S. Jaffe, G. Delsol et al., “Workshop report on Hodgkin's disease and related diseases ('grey zone' lymphoma),” Annals of Oncology, vol. 9, no. 5, supplement, pp. S31–S38, 1998.
[3]  S. H. C. E. Swerdlow, N. L. Harris, et al., WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, IARC, Lyon, France, 2008.
[4]  C. Steidl and R. D. Gascoyne, “The molecular pathogenesis of primary mediastinal large B-cell lymphoma,” Blood, vol. 118, no. 10, pp. 2659–2669, 2011.
[5]  L. Lamarre, J. O. Jacobson, A. C. Aisenberg, and N. L. Harris, “Primary large cell lymphoma of the mediastinum. A histologic and immunophenotypic study of 29 cases,” American Journal of Surgical Pathology, vol. 13, no. 9, pp. 730–739, 1989.
[6]  S. Suster and C. A. Moran, “Primary thymic epithelial neoplasms showing combined features of thymoma and thymic carcinoma: a clinicopathologic study of 22 cases,” American Journal of Surgical Pathology, vol. 20, no. 12, pp. 1469–1480, 1996.
[7]  T. F. E. Barth, F. Leith?user, S. Joos, M. Bentz, and P. M?ller, “Mediastinal (thymic) large B-cell lymphoma: where do we stand?” Lancet Oncology, vol. 3, no. 4, pp. 229–234, 2002.
[8]  S. Hoeller, D. Zihler, I. Zlobec et al., “BOB.1, CD79a and cyclin e are the most appropriate markers to discriminate classical Hodgkin's lymphoma from primary mediastinal large B-cell lymphoma,” Histopathology, vol. 56, no. 2, pp. 217–228, 2010.
[9]  L. Quintanilla-Martinez and F. Fend, “Mediastinal gray zone lymphoma,” Haematologica, vol. 96, no. 4, pp. 496–499, 2011.
[10]  C. Copie-Bergman, A. Plonquet, M. A. Alonso et al., “Mal expression in lymphoid cells: further evidence for mal as a distinct molecular marker of primary mediastinal large B-cell lymphomas,” Modern Pathology, vol. 15, no. 11, pp. 1172–1180, 2002.
[11]  K. J. Savage, S. Monti, J. L. Kutok et al., “The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma,” Blood, vol. 102, no. 12, pp. 3871–3879, 2003.
[12]  A. Rosenwald, G. Wright, K. Leroy et al., “Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma,” Journal of Experimental Medicine, vol. 198, no. 6, pp. 851–862, 2003.
[13]  F. Feuerhake, J. L. Kutok, S. Monti et al., “NFκB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes,” Blood, vol. 106, no. 4, pp. 1392–1399, 2005.
[14]  C. Guiter, I. Dusanter-Fourt, C. Copie-Bergman et al., “Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma,” Blood, vol. 104, no. 2, pp. 543–549, 2004.
[15]  C. Renné, K. Willenbrock, J. I. Martin-Subero et al., “High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma,” Leukemia, vol. 21, no. 4, pp. 780–787, 2007.
[16]  O. Ritz, C. Guiter, F. Castellano et al., “Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma,” Blood, vol. 114, no. 6, pp. 1236–1242, 2009.
[17]  O. Ritz, C. Guiter, K. Dorsch et al., “STAT6 activity is regulated by SOCS-1 and modulates BCL-XL expression in primary mediastinal B-cell lymphoma,” Leukemia, vol. 22, no. 11, pp. 2106–2110, 2008.
[18]  S. Joos, M. I. Ota?o-Joos, S. Ziegler et al., “Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene,” Blood, vol. 87, no. 4, pp. 1571–1578, 1996.
[19]  S. Wessendorf, T. F. E. Barth, A. Viardot et al., “Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH),” Leukemia, vol. 21, no. 12, pp. 2463–2469, 2007.
[20]  C. Steidl, S. P. Shah, B. W. Woolcock et al., “MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers,” Nature, vol. 471, no. 7338, pp. 377–383, 2011.
[21]  A. Traverse-Glehen, S. Pittaluga, P. Gaulard et al., “Mediastinal gray zone lymphoma: the missing link between classic Hodgkin's lymphoma and mediastinal large B-cell lymphoma,” American Journal of Surgical Pathology, vol. 29, no. 11, pp. 1411–1421, 2005.
[22]  J. F. García, M. Mollejo, M. Fraga et al., “Large B-cell lymphoma with Hodgkin's features,” Histopathology, vol. 47, no. 1, pp. 101–110, 2005.
[23]  R. P. Hasserjian, G. Ott, K. S. Elenitoba-Johnson, et al., “Commentary on the WHO classification of tumors of lymphoid tissues (2008): “Gray zone” lymphomas overlapping with Burkitt lymphoma or classical Hodgkin lymphoma,” Journal of Hematopathology, vol. 2, no. 2, pp. 89–95, 2009.
[24]  F. C. Eberle, J. Rodriguez-Canales, L. Wei et al., “Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin's lymphoma and primary mediastinal large B-cell lymphoma,” Haematologica, vol. 96, no. 4, pp. 558–566, 2011.
[25]  A. Ehlers, E. Oker, S. Bentink, D. Lenze, H. Stein, and M. Hummel, “Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype,” Leukemia, vol. 22, no. 4, pp. 835–841, 2008.
[26]  A. Ushmorov, O. Ritz, M. Hummel et al., “Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression,” Blood, vol. 104, no. 10, pp. 3326–3334, 2004.
[27]  F. C. Eberle, I. Salaverria, C. Steidl et al., “Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations,” Modern Pathology, vol. 24, no. 12, pp. 1586–1597, 2011.
[28]  M. Hummel, S. Bentink, H. Berger et al., “A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling,” The New England Journal of Medicine, vol. 354, no. 23, pp. 2419–2430, 2006.
[29]  J. E. J. Guikema, C. de Boer, E. Haralambieva et al., “IGH switch breakpoints in Burkitt lymphoma: exclusive involvement of noncanonical class switch recombination,” Genes Chromosomes and Cancer, vol. 45, no. 9, pp. 808–819, 2006.
[30]  B. Shiramizu, F. Barriga, J. Neequaye et al., “Patterns of chromosomal breakpoint locations in Burkitt's lymphoma: relevance to geography and Epstein-Barr virus association,” Blood, vol. 77, no. 7, pp. 1516–1526, 1991.
[31]  E. G. Boerma, R. Siebert, P. M. Kluin, and M. Baudis, “Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge,” Leukemia, vol. 23, no. 2, pp. 225–234, 2009.
[32]  E. Leucci, M. Cocco, A. Onnis et al., “MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation,” Journal of Pathology, vol. 216, no. 4, pp. 440–450, 2008.
[33]  S. M. Aukema, R. Siebert, E. Schuuring et al., “Double-hit B-cell lymphomas,” Blood, vol. 117, no. 8, pp. 2319–2331, 2011.
[34]  J. C. Cigudosa, N. Z. Parsa, D. C. Louie et al., “Cytogenetic analysis of 363 consecutively ascertained diffuse large B- cell lymphomas,” Genes Chromosomes and Cancer, vol. 25, no. 2, pp. 123–133, 1999.
[35]  K. J. Savage, N. A. Johnson, S. Ben-Neriah et al., “MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy,” Blood, vol. 114, no. 17, pp. 3533–3537, 2009.
[36]  S. Barrans, S. Crouch, A. Smith et al., “Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3360–3365, 2010.
[37]  N. A. Johnson, K. J. Savage, O. Ludkovski et al., “Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival,” Blood, vol. 114, no. 11, pp. 2273–2279, 2009.
[38]  I. Salaverria and R. Siebert, “The gray zone between Burkitt's lymphoma and diffuse large B-cell lymphoma from a genetics perspective,” Journal of Clinical Oncology, vol. 29, no. 14, pp. 1835–1843, 2011.
[39]  W. Klapper, M. Szczepanowski, B. Burkhardt et al., “Molecular profiling of pediatric mature B-cell lymphoma treated in population-based prospective clinical trials,” Blood, vol. 112, no. 4, pp. 1374–1381, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413