全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Role for Bcl-2 in Notch1-Dependent Transcription in Thymic Lymphoma Cells

DOI: 10.1155/2012/435241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Notch1 is a transcription factor important for T-cell development. Notch1 is active in double negative (DN) thymocytes, while being depressed in double positive (DP) thymocytes. Synchronously, the expression of Bcl-2 becomes downregulated during the transition from DN to DP thymocytes. We previously observed that overexpression of an intracellular active Notch1 (ICN) in Bcl-2-positive 2B4 T cells leads to the transcription of Notch1-regulated genes. However, these genes were not induced in Bcl-2-negative DP PD1.6 thymic lymphoma cells overexpressing ICN. Here we show that, when Bcl-2 is simultaneously introduced into these cells, Notch-regulated genes are transcribed. Only in the presence of both Bcl-2 and ICN, PD1.6 thymic lymphoma cells become resistant to glucocorticoid (GC)-induced apoptosis. Our data suggest that Bcl-2 plays a role in modulating Notch1 function in T cells. 1. Introduction Notch1 signaling plays a critical role in promoting cell growth, proliferation, and survival of immature T cells [1]. In the thymus, Notch signals are critical throughout the double negative (DN) stages for the maintenance of T-cell specification and for continued differentiation of αβ T cells past the β-selection checkpoint [2]. Upon interaction with its ligands (e.g., Delta-like 1, Delta-like 4, Jagged 1, and Jagged 2), the Notch1 protein undergoes two proteolytic events, leading to the release of the intracellular Notch domain (ICN). Subsequently, ICN translocates to the nucleus and activates transcription of target genes through its association with C-promoter binding factor 1-recombination binding protein J (CBF1-RBPJ ) and various members of the Mastermind family [2]. Notch signaling is active in DN, CD4+, and CD8+ single positive (SP) thymocytes, while being repressed in CD4+8+ double positive (DP) thymocytes [3, 4]. Similarly, DN, CD4+, and CD8+ SP thymocytes express elevated levels of Bcl-2, whereas DP thymocytes express low levels of Bcl-2 [5, 6]. Both Notch1 [3, 7, 8] and Bcl-2 [9–11] confer resistance to glucocorticoid (GC)-induced apoptosis. However, this resistance is partial as prolonged exposure to GCs leads to apoptosis of immature T cells overexpressing either Notch1 or Bcl-2 [8–10]. Bcl-2 is an antiapoptotic protein that regulates apoptosis along the intrinsic mitochondrial apoptosis pathway [12]. The alterations in Notch signaling and Bcl-2 expression during thymocyte development may explain the extreme susceptibility of DP thymocytes to GC-induced apoptosis, while DN and SP thymocytes are relatively resistant [13]. The 2B4 T hybridoma and

References

[1]  J. C. Aster, W. S. Pear, and S. C. Blacklow, “Notch signaling in leukemia,” Annual Review of Pathology, vol. 3, pp. 587–613, 2008.
[2]  M. Paganin and A. Ferrando, “Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia,” Blood Reviews, vol. 25, pp. 83–90, 2011.
[3]  M. L. Deftos, Y. W. He, E. W. Ojala, and M. J. Bevan, “Correlating notch signaling with thymocyte maturation,” Immunity, vol. 9, no. 6, pp. 777–786, 1998.
[4]  R. P. Hasserjian, J. C. Aster, F. Davi, D. S. Weinberg, and J. Sklar, “Modulated expression of NOTCH1 during thymocyte development,” Blood, vol. 88, no. 3, pp. 970–976, 1996.
[5]  N. C. Moore, G. Anderson, G. T. Williams, J. J. T. Owen, and E. J. Jenkinson, “Developmental regulation of bcl-2 expression in the thymus,” Immunology, vol. 81, no. 1, pp. 115–119, 1994.
[6]  D. J. Veis, C. L. Sentman, E. A. Bach, and S. J. Korsmeyer, “Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes,” Journal of Immunology, vol. 151, no. 5, pp. 2546–2554, 1993.
[7]  H. Sade, S. Krishna, and A. Sarin, “The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2937–2944, 2004.
[8]  R. Spokoini, S. Kfir-Erenfeld, E. Yefenof, and R. V. Sionov, “Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis,” Molecular Endocrinology, vol. 24, no. 6, pp. 1136–1150, 2010.
[9]  B. L. Hartmann, S. Geley, M. L?ffler et al., “Bcl-2 interferes with the execution phase, but not upstream events, in glucocorticoid-induced leukemia apoptosis,” Oncogene, vol. 18, no. 3, pp. 713–719, 1999.
[10]  S. Kfir, R. V. Sionov, E. Zafrir, Y. Zilberman, and E. Yefenof, “Staurosporine sensitizes T lymphoma cells to glucocorticoid-induced apoptosis: role of Nur77 and Bcl-2,” Cell Cycle, vol. 6, no. 24, pp. 3086–3096, 2007.
[11]  C. Ploner, J. Rainer, H. Niederegger et al., “The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia,” Leukemia, vol. 22, no. 2, pp. 370–377, 2008.
[12]  A. Frenzel, F. Grespi, W. Chmelewskij, and A. Villunger, “Bcl2 family proteins in carcinogenesis and the treatment of cancer,” Apoptosis, vol. 14, no. 4, pp. 584–596, 2009.
[13]  R. V. Sionov, R. Spokoini, S. Kfir-Erenfeld, O. Cohen, and E. Yefenof, “Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis,” Advances in Cancer Research, vol. 101, pp. 127–248, 2008.
[14]  R. V. Sionov, O. Cohen, S. Kfir, Y. Zilberman, and E. Yefenof, “Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 189–201, 2006.
[15]  Y. Zilberman, E. Yefenof, S. Katzav, A. Dorogin, N. Rosenheimer-Goudsmid, and R. Guy, “Apoptosis of thymic lymphoma clones by thymic epithelial cells: a putative model for ‘death by neglect',” Immunology Letters, vol. 67, no. 2, pp. 95–104, 1999.
[16]  R. V. Sionov, S. Kfir, E. Zafrir, O. Cohen, Y. Zilberman, and E. Yefenof, “Glucocorticoid-induced apoptosis revisited: a novel role for glucocorticoid receptor translocation to the mitochondria,” Cell Cycle, vol. 5, no. 10, pp. 1017–1026, 2006.
[17]  G. Wei, D. Twomey, J. Lamb et al., “Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance,” Cancer Cell, vol. 10, no. 4, pp. 331–342, 2006.
[18]  Y. Zilberman, E. Zafrir, H. Ovadia, E. Yefenof, R. Guy, and R. V. Sionov, “The glucocorticoid receptor mediates the thymic epithelial cell-induced apoptosis of CD4+8+ thymic lymphoma cells,” Cellular Immunology, vol. 227, no. 1, pp. 12–23, 2004.
[19]  A. Gutierrez and A. T. Look, “NOTCH and PI3K-AKT pathways intertwined,” Cancer Cell, vol. 12, no. 5, pp. 411–413, 2007.
[20]  Z. Wang, J. Frederick, and M. J. Garabedian, “Deciphering the phosphorylation "code" of the glucocorticoid receptor in vivo,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 26573–26580, 2002.
[21]  P. J. Real, V. Tosello, T. Palomero et al., “γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia,” Nature Medicine, vol. 15, no. 1, pp. 50–58, 2009.
[22]  J. Jang, Y. I. Choi, J. Choi et al., “Notch1 confers thymocytes a resistance to GC-induced apoptosis through Deltex1 by blocking the recruitment of p300 to the SRG3 promoter,” Cell Death and Differentiation, vol. 13, no. 9, pp. 1495–1505, 2006.
[23]  Z. Wang, A. S. Azmi, A. Ahmad et al., “TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of notch-1 signaling pathway,” Cancer Research, vol. 69, no. 7, pp. 2757–2765, 2009.
[24]  N. Heidari, M. A. Hicks, and H. Harada, “GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy,” Cell Death and Disease, vol. 1, no. 9, p. e76, 2010.
[25]  M. Li, F. Chen, N. Clifton et al., “Combined inhibition of notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect,” Molecular Cancer Therapeutics, vol. 9, no. 12, pp. 3200–3209, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413