全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2013 

A Rapid, Multiplexed, High-Throughput Flow-Through Membrane Immunoassay: A Convenient Alternative to ELISA

DOI: 10.3390/diagnostics3020244

Keywords: flow-through membrane immunoassay (FMIA), enzyme-linked immunosorbent assay (ELISA), multiplex, indirect IgM assay, Salmonella enterica serovar Typhi, typhoid, serodiagnosis, low resource setting

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes a rapid, high-throughput flow-through membrane immunoassay (FMIA) platform. A nitrocellulose membrane was spotted in an array format with multiple capture and control reagents for each sample detection area, and assay steps were carried out by sequential aspiration of sample and reagents through each detection area using a 96-well vacuum manifold. The FMIA provides an alternate assay format with several advantages over ELISA. The high surface area of the membrane permits high label concentration using gold labels, and the small pores and vacuum control provide rapid diffusion to reduce total assay time to ~30 min. All reagents used in the FMIA are compatible with dry storage without refrigeration. The results appear as colored spots on the membrane that can be quantified using a flatbed scanner. We demonstrate the platform for detection of IgM specific to lipopolysaccharides (LPS) derived from Salmonella Typhi. The FMIA format provides analytical results comparable to ELISA in less time, provides integrated assay controls, and allows compensation for specimen-to-specimen variability in background, which is a particular challenge for IgM assays.

References

[1]  Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418.
[2]  Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144, doi:10.1146/annurev.bioeng.10.061807.160524.
[3]  Spicar-Mihalic, P.; Stevens, D.Y.; Yager, P. Progress toward a Flow-Through Membrane ELISA in a Microfluidic Format. In Proceedings of the 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2007), Paris, France, 7–11 October 2007; pp. 667–669.
[4]  Stevens, D.Y.; Petri, C.R.; Osborn, J.L.; Spicar-Mihalic, P.; McKenzie, K.G.; Yager, P. Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 2008, 8, 2038–2045, doi:10.1039/b811158h.
[5]  Stevens, D.Y.; Petri, C.R.; Osborn, J.L.; Spicar-Mihalic, P.; McKenzie, K.G.; Yager, P. Rapid and Quantitative Detection of Malarial Antigen for Microfluidic Point-of-Care Diagnosis in the Developing World. In Proceedings of the 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2008), San Diego, CA, USA, 12–16 October 2008; pp. 1768–1770.
[6]  Sumi, S.; Mathai, A.; Radhakrishnan, V.V. Dot-immunobinding assay. Methods Mol. Biol. 2009, 536, 89–93, doi:10.1007/978-1-59745-542-8_11.
[7]  Cardosa, M.J.; Baharudin, F.; Hamid, S.; Hooi, T.P.; Nimmanitya, S. A nitrocellulose membrane based IgM capture enzyme immunoassay for etiological diagnosis of dengue virus infections. Clin. Diagn. Virol. 1995, 3, 343–350, doi:10.1016/0928-0197(94)00049-Z.
[8]  Cardona-Castro, N.; Agudelo-Florez, P. Immunoenzymatic dot-blot test for the diagnosis of enteric fever caused by Salmonella typhi in an endemic area. Clin. Microbiol. Infect. 1998, 4, 64–69, doi:10.1111/j.1469-0691.1998.tb00357.x.
[9]  Van Vooren, J.P.; Turneer, M.; Yernault, J.C.; de Bruyn, J.; Burton, E.; Legros, F.; Farber, C.M. A multidot immunobinding assay for the serodiagnosis of tuberculosis. Comparison with an enzyme-linked immunosorbent assay. J. Immunol. Methods 1988, 113, 45–49, doi:10.1016/0022-1759(88)90380-8.
[10]  Zalis, M.; Jaffe, C.L. Routine dot-blot assay of multiple serum samples using a simple apparatus. J. Immunol. Meth. 1987, 101, 261–264, doi:10.1016/0022-1759(87)90158-X.
[11]  House, D.; Wain, J.; Ho, V.A.; Diep, T.S.; Chinh, N.T.; Bay, P.V.; Vinh, H.; Duc, M.; Parry, C.M.; Dougan, G.; et al. Serology of typhoid fever in an area of endemicity and its relevance to diagnosis. J. Clin. Microbiol. 2001, 39, 1002–1007, doi:10.1128/JCM.39.3.1002-1007.2001.
[12]  House, D.; Chinh, N.T.; Diep, T.S.; Parry, C.M.; Wain, J.; Dougan, G.; White, N.J.; Hien, T.T.; Farrar, J.J. Use of paired serum samples for serodiagnosis of typhoid fever. J. Clin. Microbiol. 2005, 43, 4889–4890, doi:10.1128/JCM.43.9.4889-4890.2005.
[13]  Crump, J.A.; Luby, S.P.; Mintz, E.D. The global burden of typhoid fever. Bull. World Health Organ. 2004, 82, 346–353.
[14]  Parry, C.M.; Hien, T.T.; Dougan, G.; White, N.J.; Farrar, J.J. Typhoid fever. New Engl. J. Med. 2002, 347, 1770–1782.
[15]  Baker, S.; Favorov, M.; Dougan, G. Searching for the elusive typhoid diagnostic. BMC Infect. Dis. 2010, 10, doi:10.1186/1471-2334-10-45.
[16]  Martins, T.B.; Jaskowski, T.D.; Mouritsen, C.L.; Hill, H.R. An evaluation of the effectiveness of three immunoglobulin G (IgG) removal procedures for routine IgM serological testing. Clin. Diagn. Lab. Immunol. 1995, 2, 98–103.
[17]  Steward, M.W.; Steensgaard, J. Antibody Affinity: Thermodynamic Aspects and Biological Significance; CRC Press: Boca Raton, FL, USA, 1983.
[18]  McKenzie, K.G.; Lafleur, L.K.; Lutz, B.R.; Yager, P. Rapid protein depletion from complex samples using a bead-based microfluidic device for the point of care. Lab Chip 2009, 9, 3543–3548, doi:10.1039/b913806d.
[19]  Lafleur, L.; Stevens, D.; McKenzie, K.; Ramachandran, S.; Spicar-Mihalic, P.; Singhal, M.; Arjyal, A.; Osborn, J.; Kauffman, P.; Yager, P.; et al. Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards. Lab Chip 2012, 12, 1119–1127, doi:10.1039/c2lc20751f.
[20]  ImageJ. U.S. National Institutes of Health: Bethesda, MD, USA. Available online: http://rsb.info.nih.gov/ij/ (accessed on 1 February 2013).
[21]  Stevens, D.Y.; Petri, C.R.; Yager, P. On-Card Dry Reagent Storage for Disposable Microfluidic Immunoassays. In Proceedings of the 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2008), San Diego, CA, USA, 12–16 October 2008; pp. 188–190.
[22]  Lafleur, L.K.; Lutz, B.R.; Stevens, D.Y.; Spicar-Mihalic, P.; Osborn, J.L.; McKenzie, K.G.; Yager, P. Rapid Air-Driven Point-of-Care Malaria Detection. In Proceedings of the 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2009), Jeju, Korea, 1–5 November 2009; pp. 1698–1700.
[23]  Strother, K.O.; Zsak, L. Development of an enzyme-linked immunosorbent assay to detect chicken parvovirus-specific antibodies. Avian Dis. 2009, 53, 585–591, doi:10.1637/8936-052709-Reg.1.
[24]  Wong, R.; Favaloro, E.; Pollock, W.; Wilson, R.; Hendle, M.; Adelstein, S.; Baumgart, K.; Homes, P.; Smith, S.; Steele, R.; et al. A multi-centre evaluation of the intra-assay and inter-assay variation of commercial and in-house anti-cardiolipin antibody assays. Pathology 2004, 36, 182–192, doi:10.1080/00313020410001672037.
[25]  Stone, R.; Coppock, J.S.; Dawes, P.T.; Bacon, P.A.; Scott, D.L. Clinical value of ELISA assays for IgM and IgG rheumatoid factors. J. Clin. Pathol. 1987, 40, 107–111.
[26]  Graham, D.A.; Mawhinney, K.A.; Elvander, M.; Adair, B.M.; Merza, M. Evaluation of an IgM-specific indirect enzyme-linked immunosorbent assay for serodiagnosis of bovine respiratory syncytial virus infection: Influence of IgM rheumatoid factor on test results with field sera. J. Vet. Diagn. Invest. 1998, 10, 331–337, doi:10.1177/104063879801000404.
[27]  Barbulovic-Nad, I.; Lucente, M.; Sun, Y.; Zhang, M.J.; Wheeler, A.R.; Bussmann, M. Bio-microarray fabrication techniques—A review. Crit. Rev. Biotechnol. 2006, 26, 237–259, doi:10.1080/07388550600978358.
[28]  Nishioka, G.M.; Markey, A.A.; Holloway, C.K. Protein damage in drop-on-demand printers. J. Am. Chem. Soc. 2004, 126, 16320–16321, doi:10.1021/ja044539z.
[29]  Zheng, Q.A.; Lu, J.G.; Chen, H.; Huang, L.; Cai, J.N.; Xu, Z.N. Application of inkjet printing technique for biological material delivery and antimicrobial assays. Anal. Biochem. 2011, 410, 171–176, doi:10.1016/j.ab.2010.10.024.
[30]  Sirringhaus, H.; Shimoda, T. Inkjet printing of functional materials. MRS Bull. 2003, 28, 802–803, doi:10.1557/mrs2003.228.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413