全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatial Search Techniques for Mobile 3D Queries in Sensor Web Environments

DOI: 10.3390/ijgi2010135

Keywords: mobile spatial interaction, location-based GeoComputation, GeoSpatial Sensor Web, iThings

Full-Text   Cite this paper   Add to My Lib

Abstract:

Developing mobile geo-information systems for sensor web applications involves technologies that can access linked geographical and semantically related Internet information. Additionally, in tomorrow’s Web 4.0 world, it is envisioned that trillions of inexpensive micro-sensors placed throughout the environment will also become available for discovery based on their unique geo-referenced IP address. Exploring these enormous volumes of disparate heterogeneous data on today’s location and orientation aware smartphones requires context-aware smart applications and services that can deal with “information overload”. 3DQ (Three Dimensional Query) is our novel mobile spatial interaction (MSI) prototype that acts as a next-generation base for human interaction within such geospatial sensor web environments/urban landscapes. It filters information using “Hidden Query Removal” functionality that intelligently refines the search space by calculating the geometry of a three dimensional visibility shape (Vista space) at a user’s current location. This 3D shape then becomes the query “window” in a spatial database for retrieving information on only those objects visible within a user’s actual 3D field-of-view. 3DQ reduces information overload and serves to heighten situation awareness on constrained commercial off-the-shelf devices by providing visibility space searching as a mobile web service. The effects of variations in mobile spatial search techniques in terms of query speed vs. accuracy are evaluated and presented in this paper.

References

[1]  Ball, M. How do Crowd Sourcing,the Internet of Things and Big Data Converge on Geospatial Technology? Available online: http://www.vector1-media.com/dialog/perspectives/23362-how-do-crowdsourcing-the-internet-of-things-and-big-data-converge-on-geospatial-technology.html (accessed on 20 June 2012).
[2]  Frohlich, P.; Baldauf, P.; Reichl, M.; Tobler, R.F. Visual Presentation Challenges for Mobile Spatial Applications: Three Case Studies. In Proceedings of Information Visualisation IV ’08 12th International Conference, London, UK, 8–11 July 2008; pp. 533–538.
[3]  Gardiner, K.; Carswell, J.D. Viewer-based Directional Querying for Mobile Applications. In Proceedings of 4th International Workshop on Web & Wireless Geographical Information Systems (W2GIS2003), Rome, Italy, 13 December 2003.
[4]  Ceri, S.; Fraternali, P.; Bongio, A.; Brambilla, M.; Comai, S.; Matera, M. Designing Data-Intensive Web Applications (The Morgan Kaufmann Series in Data Management Systems); Morgan-Kaufmann Publishers: San Francisco, CA, USA, 2002.
[5]  Di Martino, S.; Ferrucci, F.; McArdle, G.; Petillo, G. Automatic Generation of an Adaptive WebGIS. In Proceedings of 9th International Symposium on Web & Wireless Geographical Information Systems (W2GIS 2009), Maynooth, Ireland, 7–8 December 2009; Volume 5886, pp. 171–186.
[6]  MacAodih, E.; Wilson, D.; Bertolotto, M. A Study of Spatial Interaction Behaviour for Improved Delivery of Web-Based Maps. In Proceedings of 9th International Symposium on Web & Wireless Geographical Information Systems (W2GIS2009), Maynooth, Ireland, 7–8 December 2009; Volume 5886, pp. 120–134.
[7]  Mountain, D.M. Spatial Filters for Mobile Information Retrieval. In Proceedings of 4th ACM Workshop on Geographical Information Retrieval (GIR’07), New York, NY, USA, 6–10 November 2007; pp. 61–62.
[8]  SIG.MA. Semantic Information Mashup, Available online: http://sig.ma (accessed on 20 June 2012).
[9]  Google Maps 6, Available online: https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=en (accessed on 1 March 2013).
[10]  Yin, J.; Carswell, J.D. MobiSpatial: Open Source Enabled Mobile Spatial Interaction. In Proceedings of the 27th Symposium on Applied Computing (SAC 2012), Trento, Italy, 26–30 March 2012.
[11]  Shek, S. Next-Generation Location-Based Services for Mobile Devices. CSC Grants. Available online: http:/.1.csc.com/lef/downloads/ (accessed on 20 June 2012).
[12]  Simon, R.; Frohlich, P. A Mobile Application Framework for Geospatial Web. In Proceedings of WWW ’07 the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007.
[13]  Carswell, J.D. 3DQ: Threat dome visibility querying on mobile devices. GIM Int. 2010, 24, 24–29.
[14]  Benedikt, M.L. To take hold of space: Isovists and Isovist fields. Environ. Plan. B 1979, 6, 47–65.
[15]  Fisher-Gewirtzman, D.; Wagner, I.A. Spatial openness as a practical metric for evaluating built-up environments. Environ. Plan. B 2003, 30, 37–49, doi:10.1068/b12861.
[16]  Fisher-Gewirtzman, D.; Burt, M.; Tzamir, Y. A 3-D visual method for comparative evaluation of dense built-up environments. Environ. Plan. B Plan. Design 2003, 30, 575–587, doi:10.1068/b2941.
[17]  Morello, E.; Carlo, R. A digital image of the city: 3D isovists in Lynch’s urban analysis. Environ. Plan. B 2009, 36, 837–853, doi:10.1068/b34144t.
[18]  Bartie, P.; Mills, S.; Kingham, S. An Egocentric Urban Viewshed: A Method for Landmark Visibility Mapping for Pedestrian Location Based Services. In Geospatial Vision—New Dimensions in Cartography; Moore, A., Drecki, I., Eds.; Springer: Auckland, New Zealand, 2008; pp. 61–85.
[19]  Bartie, P.; Reitsma, F.; Kingham, S.; Mills, S. Advanced visibility modelling algorithms for urban environments. Comput. Environ. Urban Syst. 2010, 34, 518–531, doi:10.1016/j.compenvurbsys.2010.06.002.
[20]  SKYLINEGLOBE. TerraExplorer Viewer for 3D Earth, Available online: http://www.-skylinesoft.com/ (accessed on 20 June 2012).
[21]  Bergen, G. Collision Detection in Interactive 3D Environments; CRC Press-Taylor & Francis Group LLC: Boca Raton, FL, USA, 2003.
[22]  Ericson, C. Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3-D Technology); CRC Press-Taylor & Francis Group LLC: Boca Raton, FL, USA, 2004.
[23]  Watt, A.; Policarpo, F. 3D Games: Real-Time Rendering and Software Technology; Addison-Wesley Publishing: Reading, MA, USA, 2000.
[24]  Ravada, S.; Kazar, B.M.; Kothuri, R. Query processing in 3D spatial databases: Experience with Oracle Spatial 11g. 3D Geo-Inform. Sci. 2009, doi:10.1007/978-3-540-87395-2.
[25]  Obermeyer, K.J. The VisiLibity Library. Available online: http://www.VisiLibity.-org (accessed on 20 June 2012).
[26]  3D ISOVIST. A Grasshopper Extension for Calculating 3D Isovist. Available online: http://parametricmodel.com/3DIsovist/32.html (accessed on 20 June 2012).
[27]  VISIODEVKIT. A Real-Time 2D/3D Rendering Engine for Mobile Devices. Available online: http://www.nn4d.com/site/global/developer_resources/apis_sdks (accessed on 20 June 2012).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413