全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lenalidomide in the Treatment of Young Patients with Multiple Myeloma: From Induction to Consolidation/Maintenance Therapy

DOI: 10.1155/2012/906247

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple myeloma is the second most common hematologic malignancy. It accounts for 20,580 new cancer cases in the USA in 2009, including 11,680 cases in men, 8,900 cases in women, and 10,580 deaths overall. Although the disease remains still incurable, outcomes have improved substantially over recent years thanks to the use of high-dose therapy and the availability of novel agents, such as the immunomodulatory drugs thalidomide and lenalidomide, and the proteasome inhibitor bortezomib. Various trials have shown the advantages linked to the use of novel agents in the transplant and not-transplant settings. In particular, this paper will present an overview of the results achieved with lenalidomide-containing combinations in patients eligible for high-dose therapies, namely, young patients. The advantages obtained should always be outweighed with the toxicity profile associated with the regimen used. Therefore, here, we will also provide a description of the main adverse events associated with lenalidomide and its combination. 1. Introduction For many years, the combination vincristine-doxorubicin-dexamethasone (VAD) was the standard induction treatment for young patients with multiple myeloma (MM) eligible for autologous stem cell transplantation (ASCT). Ten years ago patients candidate for transplant used to receive VAD for 4–6 cycles before undergoing transplantation, leading to a partial response (PR) rate ranging from 52% to 63%, with 3% to 13% of complete response (CR) rate. The availability of new drugs, such as thalidomide, lenalidomide, and bortezomib, has dramatically changed the treatment paradigm of this disease and significantly increased the therapeutic options [1]. Lenalidomide is an immunomodulatory drug with higher potency than its analogue thalidomide and without sedative or neurotoxic adverse effects. Differences between lenalidomide and thalidomide activity have been shown in preclinical studies. In comparison with thalidomide, lenalidomide has more antiproliferative activity against hematopoietic tumors, including myeloma cell lines and patients’ cells [2, 3], increased inhibition of tumor necrosis factor secretion from activated monocytes, and increased activation of T cells and natural killer cells [4]. In contrast, thalidomide has more antiangiogenic activity than lenalidomide in human models. Both lenalidomide and thalidomide interfere with key events in the angiogenic process, and activities of these drugs can be differentiated qualitatively depending on what component is studied [5]. Lenalidomide is administered orally, and the

References

[1]  J. F. San-Miguel and M. V. Mateos, “How to treat a newly diagnosed young patient with multiple myeloma,” Hematology American Society of Hematology Education Program, pp. 555–565, 2009.
[2]  A. Gandhi, L. H. Zhang, L. Lu, et al., “Effects and molecular mechanism of lenalidomide on FGFR signaling in endothelial cells and FGFR3 multiple myeloma cell lines,” Haematologica, vol. 91, no. 274, p. 745a, 2006.
[3]  T. Hideshima, D. Chauhan, Y. Shima et al., “Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy,” Blood, vol. 96, no. 9, pp. 2943–2950, 2000.
[4]  L. G. Corral, P. A. J. Haslett, G. W. Muller et al., “Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α,” Journal of Immunology, vol. 163, no. 1, pp. 380–386, 1999.
[5]  L. H. Zhang, L. Lu, and L. Wu, “Comparison of anti-angiogenic activities of thalidomide and lenalidomide in vitro,” Proceeding of the American Association for Cancer Research, vol. 47, no. 1, p. 761a, 2006.
[6]  S. V. Rajkumar and E. Blood, “Lenalidomide and venous thrombosis in multiple myeloma,” New England Journal of Medicine, vol. 354, no. 19, pp. 2079–2080, 2006.
[7]  M. Dimopoulos, A. Spencer, M. Attal et al., “Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma,” New England Journal of Medicine, vol. 357, no. 21, pp. 2123–2132, 2007.
[8]  D. M. Weber, C. Chen, R. Niesvizky et al., “Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America,” New England Journal of Medicine, vol. 357, no. 21, pp. 2133–2142, 2007.
[9]  M. A. Dimopoulos, C. Chen, A. Spencer et al., “Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma,” Leukemia, vol. 23, no. 11, pp. 2147–2152, 2009.
[10]  European Medicines Agency, “Revlimid summary of product characteristics,” European Public Assessment Report: Revlimid, http://www.emea.europa.eu.
[11]  Celgene Corporation, “Revlimid Package Insert,” Summit, NJ, USA, http:/http://www.revlimid.com/pdf/REVLIMID_PI.pdf.
[12]  J. A. Zonder, J. Crowley, M. A. Hussein et al., “Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232),” Blood, vol. 116, no. 26, pp. 5838–5841, 2010.
[13]  S. V. Rajkumar, S. Jacobus, N. S. Callander et al., “Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial,” The Lancet Oncology, vol. 11, no. 1, pp. 29–37, 2010.
[14]  A. Palumbo, F. Cavallo, I. Hardan, et al., “Melphalan/prednisone/lenalidomide (MPR) versus high-dose melphalan and autologous transplantation (MEL200) in newly diagnosed multiple myeloma (MM) patients years: results of a Randomized Phase III study,” Blood (ASH Annual Meeting Abstracts), vol. 118, abstract 3069, 2011.
[15]  F. Gay, S. V. Rajkumar, M. Coleman et al., “Clarithromycin (Biaxin)-lenalidomide-low-dose dexamethasone (BiRd) versus lenalidomide-low-dose dexamethasone (Rd) for newly diagnosed myeloma,” American Journal of Hematology, vol. 85, no. 9, pp. 664–669, 2010.
[16]  P. G. Richardson, E. Weller, S. Lonial et al., “Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma,” Blood, vol. 116, no. 5, pp. 679–686, 2010.
[17]  M. Roussel, H. Avet-Loiseau, P. Moreau, et al., “Frontline therapy with bortezomib, lenalidomide, and dexamethasone (VRD) induction followed by autologous stem cell transplantation, VRD consolidation and lenalidomide maintenance in newly diagnosed multiple myeloma patients: primary results of the IFM 2008 phase II study,” Blood (ASH Annual Meeting Abstracts), vol. 116, abstract 624, 2010.
[18]  S. Knop, C. Langer, M. Engelhardt, et al., “The efficacy and safety of RAD (Lenalidomide, Adriamycin and Dexamethasone) in newly diagnosed multiple myeloma—first results of a phase II trial by the german DSMM group,” Blood (ASH Annual Meeting Abstracts), vol. 116, abstract 1945, 2010.
[19]  S. K. Kumar, I. Flinn, S. J. Noga, et al., “Novel three-and four drug combination regimens of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide, for previously untreated multiple myeloma: results from the multicenter, randomized, phase 2 EVOLUTION study,” Blood (ASH Annual Meeting Abstracts), vol. 116, abstract 621, 2010.
[20]  A. J. Jakubowiak, D. E. Reece, C. C. Hofmeister, et al., “Lenalidomide, bortezomib, pegylated liposomal doxorubicin, and dexamethasone in newly diagnosed multiple myeloma: updated results of phase I/II MMRC trial,” Blood (ASH Annual Meeting Abstracts), vol. 114, abstract 132, 2009.
[21]  A. Palumbo and K. Anderson, “Multiple myeloma,” New England Journal of Medicine, vol. 364, no. 11, pp. 1046–1060, 2011.
[22]  S. Kumar, A. Dispenzieri, M. Q. Lacy et al., “Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma,” Leukemia, vol. 21, no. 9, pp. 2035–2042, 2007.
[23]  U. Popat, R. Saliba, R. Thandi et al., “Impairment of filgrastim-induced stem cell moblizaion after prior lenaliodmide in patients with multiple myeloma,” Biology of Blood and Marrow Transplantation, vol. 15, no. 6, pp. 718–723, 2009.
[24]  A. Mazumder, J. Kaufman, R. Niesvizky, S. Lonial, D. Vesole, and S. Jagannath, “Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients,” Leukemia, vol. 22, no. 6, pp. 1280–1281, 2008.
[25]  T. Mark, J. Stern, J. R. Furst et al., “Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma,” Biology of Blood and Marrow Transplantation, vol. 14, no. 7, pp. 795–798, 2008.
[26]  H. Paripati, A. K. Stewart, S. Cabou et al., “Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma,” Leukemia, vol. 22, no. 6, pp. 1282–1284, 2008.
[27]  A. Palumbo, F. Gay, P. Falco et al., “Bortezomib as induction before autologous transplantation, followed by lenalidomide as consolidation-maintenance in untreated multiple myeloma patients,” Journal of Clinical Oncology, vol. 28, no. 5, pp. 800–807, 2010.
[28]  A. Belch, W. Shelley, D. Bergsagel et al., “A randomized trial of maintenance versus no maintenance melphalan and prednisone in responding multiple myeloma patients,” British Journal of Cancer, vol. 57, no. 1, pp. 94–99, 1988.
[29]  C. G. Schaar, H. C. Kluin-Nelemans, C. te Marvelde et al., “Interferon-α as maintenance therapy in patients with multiple myeloma,” Annals of Oncology, vol. 16, no. 4, pp. 634–639, 2005.
[30]  M. Attal, J. L. Harousseau, S. Leyvraz et al., “Maintenance therapy with thalidomide improves survival in patients with multiple myeloma,” Blood, vol. 108, no. 10, pp. 3289–3294, 2006.
[31]  B. Barlogie, G. Tricot, E. Anaissie et al., “Thalidomide and hematopoietic-cell transplantation for multiple myeloma,” New England Journal of Medicine, vol. 354, no. 10, pp. 1021–1030, 2006.
[32]  A. Spencer, H. M. Prince, A. W. Roberts et al., “Consolidation therapy with low-dose thalidomide and prednisolone prolongs the survival of multiple myeloma patients undergoing a single autologous stem-cell transplantation procedure,” Journal of Clinical Oncology, vol. 27, no. 11, pp. 1788–1793, 2009.
[33]  H. M. Lokhorst, B. Van Der Holt, S. Zweegman et al., “A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma,” Blood, vol. 115, no. 6, pp. 1113–1120, 2010.
[34]  P. L. McCarthy, K. Owzar, K.C. Anderson, et al., “Phase III Intergroup Study of lenalidomide versus placebo maintenance therapy following single Autologous Hematopoetic Stem Cell Transplantation (AHSCT) for multiple myeloma: CALGB 100104,” Blood (ASH Annual Meeting Abstracts), vol. 116, abstract 37, 2010.
[35]  M. Attal, V. Lauwers, G. Marit, et al., “Maintenance treatment with lenalidomide after transplantation for myeloma: final analysis of the IFM 2005-02,” Blood (ASH Annual Meeting Abstracts), vol. 116, abstract 310, 2010.
[36]  A. Palumbo, A. Larocca, S. Zweegman, et al., “Second primary malignancies in newly diagnosed multiple myeloma patients treated with lenalidomide: analysis of pooled data in 2459 patients,” Blood (ASH Annual Meeting Abstracts), vol. 118, abstract 996, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413