全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models

DOI: 10.1155/2012/830703

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis. 1. Zebrafish as a Model for Hematopoiesis Recently, zebrafish have emerged as a powerful vertebrate model system due to their external fertilization, optically clear embryos, rapid development, availability of tools for manipulations of gene expression during development, and the ability to generate genetic mutants by random (insertional and chemical) and targeted mutagenesis [1–3]. Microinjections of antisense morpholinos, which cause transient knockdown of gene activity, and mRNA allows for analysis of the effects of loss and gain of function of specific genes during development [4]. Whole-mount in situ hybridization (WISH) is a powerful technique to analyze the spatiotemporal expression of genes, and placing genes in regulatory cascades by analysis of genetic mutants and/or embryos injected with morpholinos (commonly termed as morphants) [5, 6]. Specifically for hematopoiesis, zebrafish blood contains cells of all hematopoietic lineages [7–11] and orthologs of most transcription factors involved in mammalian hematopoiesis have been identified indicating evolutionarily conserved pathways of regulation [12–15]. Initial validation of the use of zebrafish for hematopoiesis research

References

[1]  J. Bradbury, “Small fish, big science,” PLoS Biology, vol. 2, no. 5, article E148, 2004.
[2]  C. Teh, S. Parinov, and V. Korzh, “New ways to admire zebrafish: progress in functional genomics research methodology,” BioTechniques, vol. 38, no. 6, pp. 897–906, 2005.
[3]  D. Wang, L. E. Jao, N. Zheng et al., “Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12428–12433, 2007.
[4]  B. R. Bill, A. M. Petzold, K. J. Clark, L. A. Schimmenti, and S. C. Ekker, “A primer for morpholino use in zebrafish,” Zebrafish, vol. 6, no. 1, pp. 69–77, 2009.
[5]  C. E. Burns, J. L. Galloway, A. C. H. Smith et al., “A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence,” Blood, vol. 113, no. 23, pp. 5776–5782, 2009.
[6]  C. Thisse and B. Thisse, “High-resolution in situ hybridization to whole-mount zebrafish embryos,” Nature Protocols, vol. 3, no. 1, pp. 59–69, 2008.
[7]  C. E. Willett, A. Cortes, A. Zuasti, and A. G. Zapata, “Early hematopoiesis and developing lymphoid organs in the zebrafish,” Developmental Dynamics, vol. 214, no. 4, pp. 323–336, 1999.
[8]  G. J. Lieschke, A. C. Oates, M. O. Crowhurst, A. C. Ward, and J. E. Layton, “Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish,” Blood, vol. 98, no. 10, pp. 3087–3096, 2001.
[9]  J. T. Dobson, J. Seibert, E. M. Teh et al., “Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination,” Blood, vol. 112, no. 7, pp. 2969–2972, 2008.
[10]  D. Carradice and G. J. Lieschke, “Zebrafish in hematology: sushi or science?” Blood, vol. 111, no. 7, pp. 3331–3342, 2008.
[11]  S. A. Renshaw and N. S. Trede, “A model 450 million years in the making: zebrafish and vertebrate immunity,” Disease Models and Mechanisms, vol. 5, no. 1, pp. 38–47, 2012.
[12]  M. A. Thompson, D. G. Ransom, S. J. Pratt et al., “The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis,” Developmental Biology, vol. 197, no. 2, pp. 248–269, 1998.
[13]  J. L. O. de Jong and L. I. Zon, “Use of the zebrafish system to study primitive and definitive hematopoiesis,” Annual Review of Genetics, vol. 39, pp. 481–501, 2005.
[14]  F. Ellett and G. J. Lieschke, “Zebrafish as a model for vertebrate hematopoiesis,” Current Opinion in Pharmacology, vol. 10, no. 5, pp. 563–570, 2010.
[15]  L. Jingd and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Disease Models and Mechanisms, vol. 4, no. 4, pp. 433–438, 2011.
[16]  W. Driever, L. Solnica-Krezel, A. F. Schier et al., “A genetic screen for mutations affecting embryogenesis in zebrafish,” Development, vol. 123, pp. 37–46, 1996.
[17]  P. Haffter, M. Granato, M. Brand et al., “The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio,” Development, vol. 123, pp. 1–36, 1996.
[18]  D. G. Ransom, P. Haffter, J. Odenthal et al., “Characterization of zebrafish mutants with defects in embryonic hematopoiesis,” Development, vol. 123, pp. 311–319, 1996.
[19]  B. M. Weinstein, A. F. Schier, S. Abdelilah et al., “Hematopoietic mutations in the zebrafish,” Development, vol. 123, pp. 303–309, 1996.
[20]  A. Brownlie, A. Donovan, S. J. Pratt et al., “Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia,” Nature Genetics, vol. 20, no. 3, pp. 244–250, 1998.
[21]  A. Donovan, A. Brownlie, Y. Zhou et al., “Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter,” Nature, vol. 403, no. 6771, pp. 776–781, 2000.
[22]  E. C. Liao, B. H. Paw, L. L. Peters et al., “Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid β-spectrin structure, and function in red cell morphogenesis and membrane stability,” Development, vol. 127, no. 23, pp. 5123–5132, 2000.
[23]  S. E. Lyons, N. D. Lawson, L. Lei, P. E. Bennett, B. M. Weinstein, and P. Paul Liu, “A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5454–5459, 2002.
[24]  R. A. Wingert, J. L. Galloway, B. Barut et al., “Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis,” Nature, vol. 436, pp. 1035–1039, 2005.
[25]  G. C. Shaw, J. J. Cope, L. Li et al., “Mitoferrin is essential for erythroid iron assimilation,” Nature, vol. 440, no. 7080, pp. 96–100, 2006.
[26]  B. M. Hogan, J. E. Layton, U. J. Pyati et al., “Specification of the primitive myeloid precursor pool requires signaling through Alk8 in zebrafish,” Current Biology, vol. 16, no. 5, pp. 506–511, 2006.
[27]  N. S. Trede, T. Ota, H. Kawasaki et al., “Zebrafish mutants with disrupted early T-cell and thymus development identified in early pressure screen,” Developmental Dynamics, vol. 237, no. 9, pp. 2575–2584, 2008.
[28]  M. C. Keightley, J. E. Layton, J. W. Hayman, et al., “Mediator subunit 12 is required for neutrophil development in zebrafish,” PloS ONE, vol. 6, no. 8, Article ID e23845, 2011.
[29]  J. Y. Bertrand and D. Traver, “Hematopoietic cell development in the zebrafish embryo,” Current Opinion in Hematology, vol. 16, no. 4, pp. 243–248, 2009.
[30]  P. Zhang and F. Liu, “In vivo imaging of hematopoietic stem cell development in the zebrafish,” Frontiers of Medicine in China, vol. 5, no. 3, pp. 239–247, 2011.
[31]  C. Pardo-Martin, T. Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nature Methods, vol. 7, no. 8, pp. 634–636, 2010.
[32]  O. Renaud, P. Herbomel, and K. Kissa, “Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells,” Nature Protocols, vol. 6, no. 12, pp. 1897–1904, 2011.
[33]  H. F. Lin, D. Traver, H. Zhu et al., “Analysis of thrombocyte development in CD41-GFP transgenic zebrafish,” Blood, vol. 106, no. 12, pp. 3803–3810, 2005.
[34]  D. Ma, J. Zhang, H. F. Lin, J. Italiano, and R. I. Handin, “The identification and characterization of zebrafish hematopoietic stem cells,” Blood, vol. 118, no. 2, pp. 289–297, 2011.
[35]  D. L. Stachura, J. R. Reyes, P. Bartunek, B. H. Paw, L. I. Zon, and D. Traver, “Zebrafish kidney stromal cell lines support multilineage hematopoiesis,” Blood, vol. 114, no. 2, pp. 279–289, 2009.
[36]  D. L. Stachura, O. Svoboda, R. P. Lau, et al., “Clonal analysis of hematopoietic progenitor cells in the zebrafish,” Blood, vol. 118, no. 5, pp. 1274–1282, 2011.
[37]  D. Traver, B. H. Paw, K. D. Poss, W. T. Penberthy, S. Lin, and L. I. Zon, “Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants,” Nature Immunology, vol. 4, no. 12, pp. 1238–1246, 2003.
[38]  J. Bussmann, J. Bakkers, and S. Schulte-Merker, “Early endocardial morphogenesis requires Scl/Tal1,” PLoS Genetics, vol. 3, no. 8, article e140, 2007.
[39]  H. Jin, J. Xu, F. Qian et al., “The 5′ zebrafish scl promoter targets transcription to the brain, spinal cord, and hematopoietic and endothelial progenitors,” Developmental Dynamics, vol. 235, no. 1, pp. 60–67, 2006.
[40]  X. Y. Zhang and A. R. F. Rodaway, “SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis,” Developmental Biology, vol. 307, no. 2, pp. 179–194, 2007.
[41]  H. Zhu, D. Traver, A. J. Davidson et al., “Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish,” Developmental Biology, vol. 281, no. 2, pp. 256–269, 2005.
[42]  H. Jin, R. Sood, J. Xu et al., “Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI,” Development, vol. 136, no. 4, pp. 647–654, 2009.
[43]  R. Sood, M. A. English, C. L. Belele et al., “Development of multilineage adult hematopoiesis in the zebrafish with a runx1 truncation mutation,” Blood, vol. 115, no. 14, pp. 2806–2809, 2010.
[44]  E. Y. N. Lam, J. Y. M. Chau, M. L. Kalev-Zylinska et al., “Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors,” Blood, vol. 113, no. 6, pp. 1241–1249, 2009.
[45]  C. Soza-Ried, I. Hess, N. Netuschil, M. Schorpp, and T. Boehm, “Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 40, pp. 17304–17308, 2010.
[46]  Y. Zhang, H. Jin, L. Li, F. X. F. Qin, and Z. Wen, “cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis,” Blood, vol. 118, no. 15, pp. 4093–4101, 2011.
[47]  J. Y. Bertrand, N. C. Chi, B. Santoso, S. Teng, D. Y. R. Stainier, and D. Traver, “Haematopoietic stem cells derive directly from aortic endothelium during development,” Nature, vol. 464, no. 7285, pp. 108–111, 2010.
[48]  C. L. Belele, M. A. English, J. Chahal et al., “Differential requirement for Gata1 DNA binding and transactivation between primitive and definitive stages of hematopoiesis in zebrafish,” Blood, vol. 114, no. 25, pp. 5162–5172, 2009.
[49]  Q. Long, A. Meng, M. Wang, J. R. Jessen, M. J. Farrell, and S. Lin, “GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene,” Development, vol. 124, no. 20, pp. 4105–4111, 1997.
[50]  K. Hsu, D. Traver, J. L. Kutok et al., “The pu.1 promoter drives myeloid gene expression in zebrafish,” Blood, vol. 104, no. 5, pp. 1291–1297, 2004.
[51]  A. C. Ward, D. O. McPhee, M. M. Condron et al., “The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish,” Blood, vol. 102, no. 9, pp. 3238–3240, 2003.
[52]  S. A. Renshaw, C. A. Loynes, D. M. I. Trushell, S. Elworthy, P. W. Ingham, and M. K. B. Whyte, “Atransgenic zebrafish model of neutrophilic inflammation,” Blood, vol. 108, no. 13, pp. 3976–3978, 2006.
[53]  C. Hall, M. Flores, T. Storm, K. Crosier, and P. Crosier, “The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish,” BMC Developmental Biology, vol. 7, article 42, 2007.
[54]  F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke, “mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish,” Blood, vol. 117, no. 4, pp. e49–e56, 2011.
[55]  E. Wienholds, S. Schulte-Merker, B. Walderich, and R. H. A. Plasterk, “Target-selected inactivation of the zebrafish rag1 gene,” Science, vol. 297, no. 5578, pp. 99–102, 2002.
[56]  J. R. Jessen, C. E. Willett, and S. Lin, “Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish,” Nature Genetics, vol. 23, no. 1, pp. 15–16, 1999.
[57]  D. M. Langenau, A. A. Ferrando, D. Traver et al., “In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7369–7374, 2004.
[58]  M. Schorpp, M. Bialecki, D. Diekhoff et al., “Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish,” Journal of Immunology, vol. 177, no. 4, pp. 2463–2476, 2006.
[59]  B. Bajoghli, N. Aghaallaei, I. Hess et al., “Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates,” Cell, vol. 138, no. 1, pp. 186–197, 2009.
[60]  R. Sood, M. A. English, M. Jones et al., “Methods for reverse genetic screening in zebrafish by resequencing and TILLING,” Methods, vol. 39, no. 3, pp. 220–227, 2006.
[61]  Y. Doyon, J. M. McCammon, J. C. Miller et al., “Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases,” Nature Biotechnology, vol. 26, no. 6, pp. 702–708, 2008.
[62]  X. Meng, M. B. Noyes, L. J. Zhu, N. D. Lawson, and S. A. Wolfe, “Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases,” Nature Biotechnology, vol. 26, no. 6, pp. 695–701, 2008.
[63]  P. Huang, A. Xiao, M. Zhou, Z. Zhu, S. Lin, and B. Zhang, “Heritable gene targeting in zebrafish using customized TALENs,” Nature Biotechnology, vol. 29, no. 8, pp. 699–700, 2011.
[64]  J. D. Sander, L. Cade, C. Khayter et al., “Targeted gene disruption in somatic zebrafish cells using engineered TALENs,” Nature Biotechnology, vol. 29, no. 8, pp. 697–698, 2011.
[65]  E. Dzierzak and N. A. Speck, “Of lineage and legacy: the development of mammalian hematopoietic stem cells,” Nature Immunology, vol. 9, no. 2, pp. 129–136, 2008.
[66]  J. Palis, J. Malik, K. E. McGrath, and P. D. Kingsley, “Primitive erythropoiesis in the mammalian embryo,” International Journal of Developmental Biology, vol. 54, no. 6-7, pp. 1011–1018, 2010.
[67]  J. Tober, A. Koniski, K. E. McGrath et al., “The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis,” Blood, vol. 109, no. 4, pp. 1433–1441, 2007.
[68]  K. E. McGrath, J. M. Frame, G. J. Fromm et al., “A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo,” Blood, vol. 117, no. 17, pp. 4600–4608, 2011.
[69]  J. Palis, R. J. Chan, A. Koniski, R. Patel, M. Starr, and M. C. Yoder, “Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4528–4533, 2001.
[70]  H. K. A. Mikkola and S. H. Orkin, “The journey of developing hematopoietic stem cells,” Development, vol. 133, no. 19, pp. 3733–3744, 2006.
[71]  K. E. Rhodes, C. Gekas, Y. Wang et al., “The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation,” Cell Stem Cell, vol. 2, no. 3, pp. 252–263, 2008.
[72]  I. M. Samokhvalov, N. I. Samokhvalova, and S. I. Nishikawa, “Cell tracing shows the contribution of the yolk sac to adult haematopoiesis,” Nature, vol. 446, no. 7139, pp. 1056–1061, 2007.
[73]  G. Swiers, M. de Bruijn, and N. A. Speck, “Hematopoietic stem cell emergence in the conceptus and the role of Runx1,” International Journal of Developmental Biology, vol. 54, no. 6-7, pp. 1151–1163, 2010.
[74]  M. J. Chen, Y. Li, M. E. de Obaldia, et al., “Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells,” Cell Stem Cell, vol. 9, no. 6, pp. 541–552, 2011.
[75]  A. Medvinsky, S. Rybtsov, and S. Taoudi, “Embryonic origin of the adult hematopoietic system: advances and questions,” Development, vol. 138, no. 6, pp. 1017–1031, 2011.
[76]  A. C. Zovein, J. J. Hofmann, M. Lynch et al., “Fate tracing reveals the endothelial origin of hematopoietic stem cells,” Cell Stem Cell, vol. 3, no. 6, pp. 625–636, 2008.
[77]  S. H. Orkin and L. I. Zon, “Hematopoiesis: an evolving paradigm for stem cell biology,” Cell, vol. 132, no. 4, pp. 631–644, 2008.
[78]  L. D. Wang and A. J. Wagers, “Dynamic niches in the origination and differentiation of haematopoietic stem cells,” Nature Reviews Molecular Cell Biology, vol. 12, no. 10, pp. 643–655, 2011.
[79]  J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” British Journal of Haematology, vol. 123, no. 4, pp. 568–576, 2003.
[80]  J. N. Berman, J. P. Kanki, and A. T. Look, “Zebrafish as a model for myelopoiesis during embryogenesis,” Experimental Hematology, vol. 33, no. 9, pp. 997–1006, 2005.
[81]  A. J. Davidson and L. I. Zon, “The “definitive” (and “primitive”) guide to zebrafish hematopoiesis,” Oncogene, vol. 23, no. 43, pp. 7233–7246, 2004.
[82]  M. O. Crowhurst, J. E. Layton, and G. J. Lieschke, “Developmental biology of zebrafish myeloid cells,” International Journal of Developmental Biology, vol. 46, no. 4, pp. 483–492, 2002.
[83]  D. Le Guyader, M. J. Redd, E. Colucci-Guyon et al., “Origins and unconventional behavior of neutrophils in developing zebrafish,” Blood, vol. 111, no. 1, pp. 132–141, 2008.
[84]  R. M. Warga, D. A. Kane, and R. K. Ho, “Fate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation,” Developmental Cell, vol. 16, no. 5, pp. 744–755, 2009.
[85]  K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature, vol. 464, no. 7285, pp. 112–115, 2010.
[86]  J. Y. Bertrand, A. D. Kim, E. P. Violette, D. L. Stachura, J. L. Cisson, and D. Traver, “Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo,” Development, vol. 134, no. 23, pp. 4147–4156, 2007.
[87]  A. T. Chen and L. I. Zon, “Zebrafish blood stem cells,” Journal of Cellular Biochemistry, vol. 108, no. 1, pp. 35–42, 2009.
[88]  H. Jin, J. Xu, and Z. Wen, “Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development,” Blood, vol. 109, no. 12, pp. 5208–5214, 2007.
[89]  E. Murayama, K. Kissa, A. Zapata et al., “Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development,” Immunity, vol. 25, no. 6, pp. 963–975, 2006.
[90]  K. Kissa, E. Murayama, A. Zapata et al., “Live imaging of emerging hematopoietic stem cells and early thymus colonization,” Blood, vol. 111, no. 3, pp. 1147–1156, 2008.
[91]  I. Hess and T. Boehm, “Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions,” Immunity, vol. 36, no. 2, pp. 298–309, 2012.
[92]  J. W. Xiong, “Molecular and developmental biology of the hemangioblast,” Developmental Dynamics, vol. 237, no. 5, pp. 1218–1231, 2008.
[93]  K. M. Vogeli, S. W. Jin, G. R. Martin, and D. Y. R. Stainier, “A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula,” Nature, vol. 443, no. 7109, pp. 337–339, 2006.
[94]  B. Argiropoulos and R. K. Humphries, “Hox genes in hematopoiesis and leukemogenesis,” Oncogene, vol. 26, no. 47, pp. 6766–6776, 2007.
[95]  C. E. Burns, D. Traver, E. Mayhall, J. L. Shepard, and L. I. Zon, “Hematopoietic stem cell fate is established by the Notch-Runx pathway,” Genes and Development, vol. 19, no. 19, pp. 2331–2342, 2005.
[96]  W. K. Clements, A. D. Kim, K. G. Ong, J. C. Moore, N. D. Lawson, and D. Traver, “A somitic Wnt16/Notch pathway specifies haematopoietic stem cells,” Nature, vol. 474, no. 7350, pp. 220–224, 2011.
[97]  M. Gering and R. Patient, “Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos,” Developmental Cell, vol. 8, no. 3, pp. 389–400, 2005.
[98]  D. Liang, J. R. Chang, A. J. Chin et al., “The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development,” Mechanisms of Development, vol. 108, no. 1-2, pp. 29–43, 2001.
[99]  L. Bugeon, H. B. Taylor, F. Progatzky, et al., “The NOTCH pathway contributes to cell fate decision in myelopoiesis,” Haematologica, vol. 96, no. 12, pp. 1753–1760, 2011.
[100]  E. de Braekeleer, N. Douet-Guilbert, F. Morel, M. J. Le Bris, C. Férec, and M. de Braekeleer, “RUNX1 translocations and fusion genes in malignant hemopathies,” Future Oncology, vol. 7, no. 1, pp. 77–91, 2011.
[101]  N. L. DiFronzo, C. T. Leung, M. K. Mammel, K. Georgopoulos, B. J. Taylor, and Q. N. Pham, “Ikaros, a lymphoid-cell-specific transcription factor, contributes to the leukemogenic phenotype of a mink cell focus-inducing murine leukemia virus,” Journal of Virology, vol. 76, no. 1, pp. 78–87, 2002.
[102]  E. Lécuyer and T. Hoang, “SCL: from the origin of hematopoiesis to stem cells and leukemia,” Experimental Hematology, vol. 32, no. 1, pp. 11–24, 2004.
[103]  F. Moreau-Gachelin, A. Tavitian, and P. Tambourin, “Spi-1 is a putative oncogene in virally induced murine erythroleukaemias,” Nature, vol. 331, no. 6153, pp. 277–280, 1988.
[104]  C. H. Nam and T. H. Rabbitts, “The role of LMO2 in development and in T Cell leukemia after chromosomal translocation or retroviral insertion,” Molecular Therapy, vol. 13, no. 1, pp. 15–25, 2006.
[105]  Y. Shima and I. Kitabayashi, “Deregulated transcription factors in leukemia,” International Journal of Hematology, vol. 94, no. 2, pp. 134–141, 2011.
[106]  R. Shimizu, J. D. Engel, and M. Yamamoto, “GATA1-related leukaemias,” Nature Reviews Cancer, vol. 8, no. 4, pp. 279–287, 2008.
[107]  L. Pevny, M. C. Simon, E. Robertson et al., “Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1,” Nature, vol. 349, no. 6306, pp. 257–260, 1991.
[108]  R. A. Shivdasanl, E. L. Mayer, and S. H. Orkin, “Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL,” Nature, vol. 373, no. 6513, pp. 432–434, 1995.
[109]  K. T. Greig, S. Carotta, and S. L. Nutt, “Critical roles for c-Myb in hematopoietic progenitor cells,” Seminars in Immunology, vol. 20, no. 4, pp. 247–256, 2008.
[110]  E. W. Scott, M. C. Simon, J. Anastasi, and H. Singh, “Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages,” Science, vol. 265, no. 5178, pp. 1573–1577, 1994.
[111]  T. Okuda, J. van Deursen, S. W. Hiebert, G. Grosveld, and J. R. Downing, “AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis,” Cell, vol. 84, no. 2, pp. 321–330, 1996.
[112]  A. J. Warren, W. H. Colledge, M. B. L. Carlton, M. J. Evans, A. J. H. Smith, and T. H. Rabbitts, “The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development,” Cell, vol. 78, no. 1, pp. 45–57, 1994.
[113]  S. L. D'Souza, A. G. Elefanty, and G. Keller, “SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development,” Blood, vol. 105, no. 10, pp. 3862–3870, 2005.
[114]  M. A. Hall, D. J. Curtis, D. Metcalf et al., “The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 992–997, 2003.
[115]  Y. Yamada, A. J. Warren, C. Dobson, A. Forster, R. Pannell, and T. H. Rabbitts, “The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3890–3895, 1998.
[116]  M. A. Hall, N. J. Slater, C. Glenn Begley et al., “Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene,” Molecular and Cellular Biology, vol. 25, no. 15, pp. 6355–6362, 2005.
[117]  M. Gering, A. R. F. Rodaway, B. G?ttgens, R. K. Patient, and A. R. Green, “The SCL gene specifies haemangioblast development from early mesoderm,” The EMBO Journal, vol. 17, no. 14, pp. 4029–4045, 1998.
[118]  E. C. Liao, B. H. Paw, A. C. Oates, S. J. Pratt, J. H. Postlethwait, and L. I. Zon, “SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish,” Genes and Development, vol. 12, no. 5, pp. 621–626, 1998.
[119]  K. A. Dooley, A. J. Davidson, and L. I. Zon, “Zebrafish scl functions independently in hematopoietic and endothelial development,” Developmental Biology, vol. 277, no. 2, pp. 522–536, 2005.
[120]  M. A. Juarez, F. Su, S. Chun, M. J. Kiel, and S. E. Lyons, “Distinct roles for SCL in erythroid specification and maturation in zebrafish,” The Journal of Biological Chemistry, vol. 280, no. 50, pp. 41636–41644, 2005.
[121]  L. J. Patterson, M. Gering, and R. Patient, “Scl is required for dorsal aorta as well as blood formation in zebrafish embryos,” Blood, vol. 105, no. 9, pp. 3502–3511, 2005.
[122]  L. J. Patterson, M. Gering, C. E. Eckfeldt et al., “The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish,” Blood, vol. 109, no. 6, pp. 2389–2398, 2007.
[123]  H. Kataoka, M. Ochi, K. I. Enomoto, and A. Yamaguchi, “Cloning and embryonic expression patterns of the zebrafish Runt domain genes, runxa and runxb,” Mechanisms of Development, vol. 98, no. 1-2, pp. 139–143, 2000.
[124]  M. Ichikawa, T. Asai, S. Chiba, M. Kurokawa, and S. Ogawa, “Runx1/AML-1 ranks as a master regulator of adult hematopoiesis,” Cell Cycle, vol. 3, no. 6, pp. 722–724, 2004.
[125]  G. Huang, P. Zhang, H. Hirai et al., “PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis,” Nature Genetics, vol. 40, pp. 51–60, 2008.
[126]  J. Michaud, K. M. Simpson, R. Escher et al., “Integrative analysis of RUNX1 downstream pathways and target genes,” BMC Genomics, vol. 9, article 363, 2008.
[127]  M. R. Tijssen, A. Cvejic, A. Joshi et al., “Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators,” Developmental Cell, vol. 20, no. 5, pp. 597–609, 2011.
[128]  R. K. Hyde and P. P. Liu, “RUNX1 repression-independent mechanisms of leukemogenesis by fusion genes CBFB-MYH11 and AML1-ETO (RUNX1-RUNX1T1),” Journal of Cellular Biochemistry, vol. 110, no. 5, pp. 1039–1045, 2010.
[129]  N. A. Sangle and S. L. Perkins, “Core-binding factor acute myeloid leukemia,” Archives of Pathology & Laboratory Medicine, vol. 135, no. 11, pp. 1504–1509, 2011.
[130]  J. K. Mangan and N. A. Speck, “RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making,” Critical Reviews in Oncogenesis, vol. 16, no. 1-2, pp. 77–91, 2011.
[131]  M. Osato, N. Asou, E. Abdalla et al., “Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias,” Blood, vol. 93, no. 6, pp. 1817–1824, 1999.
[132]  S. Schnittger, F. Dicker, W. Kern et al., “RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis,” Blood, vol. 117, no. 8, pp. 2348–2357, 2011.
[133]  J. D. Growney, H. Shigematsu, Z. Li et al., “Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype,” Blood, vol. 106, no. 2, pp. 494–504, 2005.
[134]  M. Ichikawa, T. Asai, T. Saito et al., “AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis,” Nature Medicine, vol. 10, no. 3, pp. 299–304, 2004.
[135]  M. J. Chen, T. Yokomizo, B. M. Zeigler, E. Dzierzak, and N. A. Speck, “Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter,” Nature, vol. 457, no. 7231, pp. 887–891, 2009.
[136]  C. E. Burns, T. DeBlasio, Y. Zhou, J. Zhang, L. Zon, and S. D. Nimer, “Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators,” Experimental Hematology, vol. 30, no. 12, pp. 1381–1389, 2002.
[137]  M. L. Kalev-Zylinska, J. A. Horsfield, M. V. C. Flores et al., “Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX-1-CBF2T1 transgene advances a model for studies of leukemogenesis,” Development, vol. 129, no. 8, pp. 2015–2030, 2002.
[138]  R. D. Allen III, T. P. Bender, and G. Siu, “c-Myb is essential for early T cell development,” Genes and Development, vol. 13, no. 9, pp. 1073–1078, 1999.
[139]  Y. K. Lieu and E. P. Reddy, “Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21689–21694, 2009.
[140]  L. C. Doré and J. D. Crispino, “Transcription factor networks in erythroid cell and megakaryocyte development,” Blood, vol. 118, no. 2, pp. 231–239, 2011.
[141]  R. Ferreira, K. Ohneda, M. Yamamoto, and S. Philipsen, “GATA1 function, a paradigm for transcription factors in hematopoiesis,” Molecular and Cellular Biology, vol. 25, no. 4, pp. 1215–1227, 2005.
[142]  J. J. Welch, J. A. Watts, C. R. Vakoc et al., “Global regulation of erythroid gene expression by transcription factor GATA-1,” Blood, vol. 104, no. 10, pp. 3136–3147, 2004.
[143]  W. A. Ciovacco, W. H. Raskind, and M. A. Kacena, “Human phenotypes associated with GATA-1 mutations,” Gene, vol. 427, no. 1-2, pp. 1–6, 2008.
[144]  Y. Fujiwara, C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin, “Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 22, pp. 12355–12358, 1996.
[145]  H. W. Detrich III, M. W. Kieran, F. Y. Chan et al., “Intraembryonic hematopoietic cell migration during vertebrate development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 23, pp. 10713–10717, 1995.
[146]  P. Kastner and S. Chan, “PU.1: a crucial and versatile player in hematopoiesis and leukemia,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 1, pp. 22–27, 2008.
[147]  J. L. Galloway, R. A. Wingert, C. Thisse, B. Thisse, and L. I. Zon, “Loss of Gata1 but not Gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos,” Developmental Cell, vol. 8, no. 1, pp. 109–116, 2005.
[148]  J. Rhodes, A. Hagen, K. Hsu et al., “Interplay of pu.1 and Gata1 determines myelo-erythroid progenitor cell fate in zebrafish,” Developmental Cell, vol. 8, no. 1, pp. 97–108, 2005.
[149]  N. Danilova and L. A. Steiner, “B cells develop in the zebrafish pancreas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13711–13716, 2002.
[150]  K. Georgopoulos, “Haematopoietic cell-fate decisions, chromatin regulation and ikaros,” Nature Reviews Immunology, vol. 2, no. 3, pp. 162–174, 2002.
[151]  L. B. John and A. C. Ward, “The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity,” Molecular Immunology, vol. 48, no. 9-10, pp. 1272–1278, 2011.
[152]  J. H. Wang, A. Nichogiannopoulou, L. Wu et al., “Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation,” Immunity, vol. 5, no. 6, pp. 537–549, 1996.
[153]  N. Novershtern, A. Subramanian, L. N. Lawton et al., “Densely interconnected transcriptional circuits control cell states in human hematopoiesis,” Cell, vol. 144, no. 2, pp. 296–309, 2011.
[154]  F. Rosenbauer, K. Wagner, J. L. Kutok et al., “Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1,” Nature Genetics, vol. 36, no. 6, pp. 624–630, 2004.
[155]  R. Shimizu, S. Takahashi, K. Ohneda, J. D. Engel, and M. Yamamoto, “In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis,” The EMBO Journal, vol. 20, no. 18, pp. 5250–5260, 2001.
[156]  H. Sakamoto, G. Dai, K. Tsujino et al., “Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development,” Blood, vol. 108, no. 3, pp. 896–903, 2006.
[157]  F. Qian, F. Zhen, J. Xu, M. Huang, W. Li, and Z. Wen, “Distinct functions for different scl isoforms in zebrafish primitive and definitive hematopoiesis,” PLoS Biology, vol. 5, no. 5, article e132, 2007.
[158]  X. Ren, G. A. Gomez, B. Zhang, and S. Lin, “Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells,” Blood, vol. 115, no. 26, pp. 5338–5346, 2010.
[159]  T. J. Ley, E. R. Mardis, L. Ding et al., “DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome,” Nature, vol. 456, no. 7218, pp. 66–72, 2008.
[160]  E. R. Mardis, L. Ding, D. J. Dooling, et al., “Recurring mutations found by sequencing an acute myeloid leukemia genome,” The New England Journal of Medicine, vol. 361, no. 11, pp. 1058–1066, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413