全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HIV-Associated Hodgkin's Lymphoma: Prognosis and Therapy in the Era of cART

DOI: 10.1155/2012/507257

Full-Text   Cite this paper   Add to My Lib

Abstract:

Patients with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) are at increased risk for developing Hodgkin's lymphoma (HL), a risk that has not decreased despite the success of combination antiretroviral therapy (cART) in the modern era. HIV-associated HL (HIV-HL) differs from HL in non-HIV-infected patients in that it is nearly always associated with Epstein-Barr virus (EBV) and more often presents with high-risk features of advanced disease, systemic “B” symptoms, and extranodal involvement. Before the introduction of cART, patients with HIV-HL had lower response rates and worse outcomes than non-HIV-infected HL patients treated with conventional chemotherapy. The introduction of cART, however, has allowed for the delivery of full-dose and dose-intensive chemotherapy regimens with improved outcomes that approach those seen in non-HIV infected patients. Despite these significant advances, HIV-HL patients remain at increased risk for treatment-related toxicities and drug-drug interactions which require careful attention and supportive care to insure the safe administration of therapy. This paper will address the modern diagnosis, risk stratification, and therapy of HIV-associated HL. 1. Introduction Since the introduction of combination antiretroviral therapy (cART) in 1996, patients with human immunodeficiency virus (HIV) infection are living longer, with improved immune function and a reduced risk of developing acquired immune deficiency syndrome (AIDS) [1, 2]. In concert with improved viral control, there has been a substantial change in the landscape of malignancies occurring in the setting of HIV. AIDS-defining cancers such as Kaposi's sarcoma (KS) and non-Hodgkin's lymphomas (NHL) have declined significantly, though the change in NHL incidence has not applied evenly across disease subtypes. Diffuse large B-cell lymphoma, primary CNS lymphoma, plasmablastic lymphoma, and primary effusion lymphoma have all declined, while Burkitt lymphoma has remained stable. Over the same time period, non-AIDS-defining malignancies, including numerous solid tumors and Hodgkin's lymphoma (HL), have remained stable or have increased in incidence [3, 4]. The growth of an aging population with HIV has contributed to this rise, but the risk of many of these cancers remains significantly increased above that observed in the general population, suggesting an effect of ongoing virus-mediated immune suppression and stimulation on cancer risk despite the salutary effects of antiretroviral therapy [3–8]. There will be approximately 8800 new cases

References

[1]  R. Detels, A. Mu?oz, G. McFarlane et al., “Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration,” Journal of the American Medical Association, vol. 280, no. 17, pp. 1497–1503, 1998.
[2]  F. J. Palella Jr., K. M. Delaney, A. C. Moorman et al., “Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection,” The New England Journal of Medicine, vol. 338, no. 13, pp. 853–860, 1998.
[3]  M. S. Shiels, R. M. Pfeiffer, M. H. Gail et al., “Cancer burden in the HIV-infected population in the United States,” Journal of the National Cancer Institute, vol. 103, no. 9, pp. 753–762, 2011.
[4]  T. Powles, D. Robinson, J. Stebbing et al., “Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection,” Journal of Clinical Oncology, vol. 27, no. 6, pp. 884–890, 2009.
[5]  R. J. Bedimo, K. A. McGinnis, M. Dunlap, M. C. Rodriguez-Barradas, and A. C. Justice, “Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART Era: impact of immunosuppression,” Journal of Acquired Immune Deficiency Syndromes, vol. 52, no. 2, pp. 203–208, 2009.
[6]  B. Marin, R. Thiébaut, H. C. Bucher et al., “Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy,” AIDS, vol. 23, no. 13, pp. 1743–1753, 2009.
[7]  S. Franceschi, M. Lise, G. M. Clifford et al., “Changing patterns of cancer incidence in the early-and late-HAART periods: the Swiss HIV Cohort Study,” British Journal of Cancer, vol. 103, no. 3, pp. 416–422, 2010.
[8]  E. P. Simard, R. M. Pfeiffer, and E. A. Engels, “Spectrum of cancer risk late after AIDS onset in the United States,” Archives of Internal Medicine, vol. 170, no. 15, pp. 1337–1345, 2010.
[9]  R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA Cancer Journal for Clinicians, vol. 61, no. 4, pp. 212–236, 2011.
[10]  L. A. Ries, C. L. Kosary, B. F. Hankey, et al., Eds., SEER Cancer Statistics Review: 1973–1994, NIH publ no. 97-2789, National Cancer Institute, Bethesda, Md, USA, 1997.
[11]  E. Chimienti, M. Spina, R. Gastaldi, et al., “Clinical characteristics and outcome of 290 patients (pts) with Hodgkin’s disease and HIV infection (HD-HIV) in pre and HAART (highly active anti-retroviral therapy) era,” Annals of Oncology, vol. 19, 2008, abstract no. 168.
[12]  N. A. Hessol, M. H. Katz, J. Y. Liu, S. P. Buchbinder, C. J. Rubino, and S. D. Holmberg, “Increased incidence of Hodgkin disease in homosexual men with HIV infection,” Annals of Internal Medicine, vol. 117, no. 4, pp. 309–311, 1992.
[13]  D. Serraino, A. Carbone, S. Franceschi, and U. Tirelli, “Increased frequency of lymphocyte depletion and mixed cellularity subtypes of Hodgkin's disease in HIV-infected patients,” European Journal of Cancer A, vol. 29, no. 14, pp. 1948–1950, 1993.
[14]  A. M. Levine, “Hodgkin lymphoma: to the HAART of the matter,” Blood, vol. 108, no. 12, pp. 3630–3631, 2006.
[15]  R. J. Biggar, E. S. Jaffe, J. J. Goedert, A. Chaturvedi, R. Pfeiffer, and E. A. Engels, “Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS,” Blood, vol. 108, no. 12, pp. 3786–3791, 2006.
[16]  K. L. Grogg, R. F. Miller, and A. Dogan, “HIV infection and lymphoma,” Journal of Clinical Pathology, vol. 60, no. 12, pp. 1365–1372, 2007.
[17]  U. Tirelli, D. Errante, R. Dolcetti et al., “Hodgkin's disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors,” Journal of Clinical Oncology, vol. 13, no. 7, pp. 1758–1767, 1995.
[18]  A. Carbone, A. Gloghini, L. M. Larocca et al., “Human immunodeficiency virus-associated Hodgkin's disease derives from post-germinal center B cells,” Blood, vol. 93, no. 7, pp. 2319–2326, 1999.
[19]  S. A. Rezk and L. M. Weiss, “Epstein-Barr virus-associated lymphoproliferative disorders,” Human Pathology, vol. 38, no. 9, pp. 1293–1304, 2007.
[20]  J. W. Said, “Immunodeficiency-related hodgkin lymphoma and its mimics,” Advances in Anatomic Pathology, vol. 14, no. 3, pp. 189–194, 2007.
[21]  A. Carbone, A. Gloghini, and G. Dotti, “EBV-associated lymphoproliferative disorders: classification and treatment,” Oncologist, vol. 13, no. 5, pp. 577–585, 2008.
[22]  M. Guiguet, F. Boué, J. Cadranel, J. M. Lang, E. Rosenthal, and D. Costagliola, “Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study,” The Lancet Oncology, vol. 10, no. 12, pp. 1152–1159, 2009.
[23]  J. M. Andrieu, S. Roithmann, J. M. Tourani et al., “Hodgkin's disease during HIV1 infection: the French registry experience,” Annals of Oncology, vol. 4, no. 8, pp. 635–641, 1993.
[24]  R. Rubio, “Hodgkin's disease associated with human immunodeficiency virus infection: a clinical study of 46 cases,” Cancer, vol. 73, no. 9, pp. 2400–2407, 1994.
[25]  D. Hasenclever and V. Diehl, “A prognostic score for advanced Hodgkin's disease,” The New England Journal of Medicine, vol. 339, no. 21, pp. 1506–1514, 1998.
[26]  J. Berenguer, P. Miralles, J. M. Ribera et al., “Characteristics and outcome of AIDS-related hodgkin lymphoma before and after the introduction of highly active antiretroviral therapy,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 4, pp. 422–428, 2008.
[27]  L. Gérard, L. Galicier, E. Boulanger et al., “Improved survival in HIV-related Hodgkin's lymphoma since the introduction of highly active antiretroviral therapy,” AIDS, vol. 17, no. 1, pp. 81–87, 2003.
[28]  C. Hoffmann, K. U. Chow, E. Wolf et al., “Strong impact of highly active antiretroviral therapy on survival in patients with human immunodeficiency virus-associated Hodgkin's disease,” British Journal of Haematology, vol. 125, no. 4, pp. 455–462, 2004.
[29]  M. Hutchings, A. Loft, M. Hansen et al., “Position emission tomography with or without computed tomography in the primary staging of Hodgkin's lymphoma,” Haematologica, vol. 91, no. 4, pp. 482–489, 2006.
[30]  E. E. Pakos, A. D. Fotopoulos, and J. P. A. Ioannidis, “18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis,” Journal of Nuclear Medicine, vol. 46, no. 6, pp. 958–963, 2005.
[31]  A. M. Levine, P. Li, T. Cheung et al., “Chemotherapy consisting of doxorubicin, bleomycin, vinblastine, and dacarbazine with granulocyte-colony-stimulating factor in HIV-infected patients with newly diagnosed Hodgkin's disease: a prospective, multi-institutional AIDS Clinical Trials Group Study (ACTG 149),” Journal of Acquired Immune Deficiency Syndromes, vol. 24, no. 5, pp. 444–450, 2000.
[32]  D. Errante, U. Tirelli, R. Gastaldi et al., “Combined antineoplastic and antiretroviral therapy for patients with Hodgkin's disease and human immunodeficiency virus infection: a prospective study of 17 patients,” Cancer, vol. 73, no. 2, pp. 437–444, 1994.
[33]  D. Errante, J. Gabarre, A. L. Ridolfo et al., “Hodgkin's disease in 35 patients with HIV infection: an experience with epirubicin, bleomycin, vinblastine and prednisone chemotherapy in combination with antiretroviral therapy and primary use of G-CSF,” Annals of Oncology, vol. 10, no. 2, pp. 189–195, 1999.
[34]  B. Xicoy, J. M. Ribera, P. Miralles et al., “Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin's lymphoma,” Haematologica, vol. 92, no. 2, pp. 191–198, 2007.
[35]  M. Spina, J. Gabarre, G. Rossi et al., “Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection,” Blood, vol. 100, no. 6, pp. 1984–1988, 2002.
[36]  P. Hartmann, U. Rehwald, B. Salzberger et al., “BEACOPP therapeutic regimen for patients with Hodgkin's disease and HIV infection,” Annals of Oncology, vol. 14, no. 10, pp. 1562–1569, 2003.
[37]  M. Spina, G. Rossi, A. Antinori, et al., “VEBEP regimen and highly active antiretroviral therapy (HAART) in patients (pts) with HD and HIV infection (HD-HIV): final results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study,” Annals of Oncology, vol. 21, supplement 8, 2010, abstract no. 1148.
[38]  J. Gabarre, A. G. Marcelin, N. Azar et al., “High-dose therapy plus autologous hematopoietic stem cell transplantation for human immunodeficiency virus (HIV)-related lymphoma: results and impact on HIV disease,” Haematologica, vol. 89, no. 9, pp. 1100–1108, 2004.
[39]  A. Krishnan, A. Molina, J. Zaia et al., “Durable remissions with autologous stem cell transplantation for high-risk HTV-associated lymphomas,” Blood, vol. 105, no. 2, pp. 874–878, 2005.
[40]  D. Serrano, R. Carrión, P. Balsalobre et al., “HIV-associated lymphoma successfully treated with peripheral blood stem cell transplantation,” Experimental Hematology, vol. 33, no. 4, pp. 487–494, 2005.
[41]  T. R. Spitzer, R. F. Ambinder, J. Y. Lee et al., “Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS malignancy consortium study 020,” Biology of Blood and Marrow Transplantation, vol. 14, no. 1, pp. 59–66, 2008.
[42]  P. Balsalobre, J. L. Díez-Martín, A. Re et al., “Autologous stem-cell transplantation in patients with HIV-related lymphoma,” Journal of Clinical Oncology, vol. 27, no. 13, pp. 2192–2198, 2009.
[43]  A. Re, M. Michieli, S. Casari et al., “High-dose therapy and autologous peripheral blood stem cell transplantation as salvage treatment for AIDS-related lymphoma: long-term results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study with analysis of prognostic factors,” Blood, vol. 114, no. 7, pp. 1306–1313, 2009.
[44]  J. L. Díez-Martín, P. Balsalobre, A. Re et al., “Comparable survival between HIV+ and HIV- non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation,” Blood, vol. 113, no. 23, pp. 6011–6014, 2009.
[45]  D. J. Straus, C. S. Portlock, J. Qin et al., “Results of a prospective randomized clinical trial of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) followed by radiation therapy (RT) versus ABVD alone for stages I, II, and IIIA nonbulky Hodgkin disease,” Blood, vol. 104, no. 12, pp. 3483–3489, 2004.
[46]  R. M. Meyer, M. K. Gospodarowicz, J. M. Connors et al., “Randomized comparison of ABVD chemotherapy with a strategy that includes radiation therapy in patients with limited-stage Hodgkin's lymphoma,” Journal of Clinical Oncology, vol. 23, no. 21, pp. 4634–4642, 2005.
[47]  G. P. Canellos, J. S. Abramson, D. C. Fisher, and A. S. LaCasce, “Treatment of favorable, limited-stage Hodgkin's lymphoma with chemotherapy without consolidation by radiation therapy,” Journal of Clinical Oncology, vol. 28, no. 9, pp. 1611–1615, 2010.
[48]  D. C. Linch, D. Winfield, A. H. Goldstone et al., “Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin's disease: results of a BNLI randomised trial,” The Lancet, vol. 341, no. 8852, pp. 1051–1054, 1993.
[49]  N. Schmitz, B. Pfistner, M. Sextro et al., “Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial,” The Lancet, vol. 359, no. 9323, pp. 2065–2071, 2002.
[50]  A. Re, C. Cattaneo, M. Michieli et al., “High-dose therapy and autologous peripheral-blood stem-cell transplantation as salvage treatment for HIV-associated lymphoma in patients receiving highly active antiretroviral therapy,” Journal of Clinical Oncology, vol. 21, no. 23, pp. 4423–4427, 2003.
[51]  M. Sandherr, H. Einsele, H. Hebart et al., “Antiviral prophylaxis in patients with haematological malignancies and solid tumours: guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Oncology (DGHO),” Annals of Oncology, vol. 17, no. 7, pp. 1051–1059, 2006.
[52]  V. Gupta, M. Tomblyn, T. Pederson, et al., “Allogeneic hematopoietic stem cell transplantation in HIV-positive patients with malignant and non-malignant disorders: a report from the Center for International Blood and Marrow Transplant Research (CIBMTR),” Blood, vol. 108, Article ID 5353, 2006.
[53]  R. W. Chen, A. K. Gopal, S. M. Smith, et al., “Results from a pivotal phase II study of brentuximab vedotin (SGN-35) in patients with relapsed or refractory Hodgkin lymphoma (HL),” Journal of Clinical Oncology, vol. 29, 2011, abstract no. 8031.
[54]  G. Jerusalem, Y. Beguin, M. F. Fassotte et al., “Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging,” Blood, vol. 94, no. 2, pp. 429–433, 1999.
[55]  M. Hutchings, A. Loft, M. Hansen et al., “FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma,” Blood, vol. 107, no. 1, pp. 52–59, 2006.
[56]  P. L. Zinzani, M. Tani, S. Fanti et al., “Early positron emission tomography (PET) restaging: a predictive final response in Hodgkin's disease patients,” Annals of Oncology, vol. 17, no. 8, pp. 1296–1300, 2006.
[57]  A. Gallamini, M. Hutchings, L. Rigacci et al., “Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin's lymphoma: a report from a joint Italian-Danish study,” Journal of Clinical Oncology, vol. 25, no. 24, pp. 3746–3752, 2007.
[58]  J. A. Barnes, A. S. LaCasce, K. Zukotynski et al., “End-of-treatment but not interim PET scan predicts outcome in nonbulky limited-stage Hodgkin's lymphoma,” Annals of Oncology, vol. 22, no. 4, pp. 910–915, 2011.
[59]  K. Dunleavy, R. F. Little, S. Pittaluga et al., “The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma,” Blood, vol. 115, no. 15, pp. 3017–3024, 2010.
[60]  T. Antoniou and A. L. Tseng, “Interactions between antiretrovirals and antineoplastic drug therapy,” Clinical Pharmacokinetics, vol. 44, no. 2, pp. 111–145, 2005.
[61]  M. Bower, N. McCall-Peat, N. Ryan et al., “Protease inhibitors potentiate chemotherapy-induced neutropenia,” Blood, vol. 104, no. 9, pp. 2943–2946, 2004.
[62]  B. Tan and L. Ratner, “The use of new antiretroviral therapy in combination with chemotherapy,” Current Opinion in Oncology, vol. 9, no. 5, pp. 455–464, 1997.
[63]  M. Michieli, M. Mazzucato, U. Tirelli, and P. De Paoli, “Stem cell transplantation for lymphoma patients with HIV infection,” Cell Transplantation, vol. 20, pp. 351–370, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133