全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Profiling of Aggressive Lymphomas

DOI: 10.1155/2012/464680

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the last years, several studies of molecular profiling of aggressive lymphomas were performed. In particular, it was shown that DLBCL can be distinguished in two different entities according to GEP. Specifically, ABC and GCB subtypes were characterized by having different pathogenetic and clinical features. In addition, it was demonstrated that DLBCLs are distinct from BL. Indeed, the latter is a unique molecular entity. However, relevant pathological differences emerged among the clinical subtypes. More recently, microRNA profiling provided further information concerning BL-DLBCL distinction as well as for their subclassification. In this paper, the authors based on their own experience and the most updated literature review, the main concept on molecular profiling of aggressive lymphomas. 1. Introduction Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are the commonest aggressive B-NHL worldwide and represent distinct entities in the World Health Organization (WHO) classification [1, 2]. BL is listed in the WHO classification as a single genetic and morphologic entity with variable clinical presentation. It accounts for 30–50% of lymphomas in children, but only 1-2% in adults. In particular, the WHO classification recognizes 3 clinical subsets of BL: endemic (eBL), sporadic (sBL), and immunodeficiency-associated (ID-BL) [1]. The endemic form is the commonest type, being the most frequent childhood cancer in equatorial Africa [1, 3–5]. eBL is almost invariably associated with Epstein-Barr virus (EBV) infection, although local environmental toxics (i.e., Euphorbia tirucalli) and coinfection with arbovirus or malaria also appear to be important for its pathogenesis [6–8]. sBL is the most commonly recorded form in the USA and Europe. Contrary to eBL, only ~20% of cases are correlated to EBV [9]. Immunodeficiency-associated BL occurs more commonly in patients infected with HIV (HIV-BL). Intriguingly, because HIV-BL can occur in patients with relatively high CD4 counts, immunosuppression per se is not sufficient to explain the relatively high prevalence of BL in this setting [10, 11]. The diagnosis of classical BL rests on the presence of a monotonous infiltrate of medium-sized blastic lymphoid cells that show round nuclei with clumped chromatin and multiple, centrally located nucleoli. The tumor cells have a high proliferation rate and intermingled macrophages containing apoptotic debris lead to the morphological aspect of a “starry sky” pattern [1]. Immunophenotypic features of BL include positivity of tumor cells for CD20 and CD10 (and

References

[1]  L. Leoncini, M. Raphael, H. Stein, et al., “Burkitt lymphoma,” in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, S. Swerdlow, E. Campo, N. L. Harris, et al., Eds., vol. 2, pp. 262–264, IARC, Lyon, France, 4th edition, 2008.
[2]  H. Stein, H. H. Wacker, W. C. Chan, et al., “Diffuse large B-cell lymphoma, not otherwise specified,” in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, S. Swerdlow, E. Campo, N. L. Harris, et al., Eds., vol. 2, pp. 233–237, IARC, Lyon, France, 4th edition, 2008.
[3]  D. H. Wright, “Burkitt's lymphoma: a review of the pathology, immunology, and possible etiologic factors,” Pathology Annual, vol. 6, pp. 337–363, 1971.
[4]  C. Bellan, S. Lazzi, G. de Falco, A. Nyongo, A. Giordano, and L. Leoncini, “Burkitt's lymphoma: new insights into molecular pathogenesis,” Journal of Clinical Pathology, vol. 56, no. 3, pp. 188–192, 2003.
[5]  L. K. Tumwine, C. Campidelli, S. Righi, S. Neda, W. Byarugaba, and S. A. Pileri, “B-cell non-Hodgkin lymphomas in Uganda: an immunohistochemical appraisal on tissue microarray,” Human Pathology, vol. 39, no. 6, pp. 817–823, 2008.
[6]  C. A. van den Bosch, “Is endemic Burkitt's lymphoma an alliance between three infections and a tumour promoter?” The Lancet Oncology, vol. 5, no. 12, pp. 738–746, 2004.
[7]  N. Rasti, K. I. Falk, D. Donati et al., “Circulating Epstein-Barr virus in children living in malaria-endemic areas,” Scandinavian Journal of Immunology, vol. 61, no. 5, pp. 461–465, 2005.
[8]  A. M. Moormann, K. Chelimo, O. P. Sumba et al., “Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children,” Journal of Infectious Diseases, vol. 191, no. 8, pp. 1233–1238, 2005.
[9]  M. I. Gutierrez, K. Bhatia, F. Barriga et al., “Molecular epidemiology of Burkitt's lymphoma from South America: differences in breakpoint location and Epstein-Barr virus association from tumors in other world regions,” Blood, vol. 79, no. 12, pp. 3261–3266, 1992.
[10]  S. Lazzi, C. Bellan, G. de Falco et al., “Expression of RB2/p130 tumor-suppressor gene in AIDS-related non-Hodgkin's lymphomas: implications for disease pathogenesis,” Human Pathology, vol. 33, no. 7, pp. 723–731, 2002.
[11]  G. de Falco, C. Bellan, S. Lazzi et al., “Interaction between HIV-1 Tat and pRb2/p130: a possible mechanism in the pathogenesis of AIDS-related neoplasms,” Oncogene, vol. 22, no. 40, pp. 6214–6219, 2003.
[12]  C. Bellan, S. Lazzi, M. Hummel et al., “Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas,” Blood, vol. 106, no. 3, pp. 1031–1036, 2005.
[13]  G. W. Bornkamm, “Epstein-Barr virus and the pathogenesis of Burkitt's lymphoma: more questions than answers,” International Journal of Cancer, vol. 124, no. 8, pp. 1745–1755, 2009.
[14]  P. G. Pelicci, D. M. Knowles II, I. Magrath, and R. Dalla-Favera, “Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 9, pp. 2984–2988, 1986.
[15]  P. M. Kluin, N. L. Harris, H. Stein, et al., “B-cell lymphoma, unclassifiable with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma,” in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, S. Swerdlow, E. Campo, N. L. Harris, et al., Eds., vol. 2, pp. 265–266, IARC, Lyon, France, 4th edition, 2008.
[16]  P. C. Bishop, V. K. Rao, and W. H. Wilson, “Burkitt's lymphoma: molecular pathogenesis and treatment,” Cancer Investigation, vol. 18, no. 6, pp. 574–583, 2000.
[17]  R. D. Butler and J. D. Hainsworth, “Optimal therapy for small noncleaved cell lymphoma,” Cancer Treatment and Research, vol. 66, pp. 65–79, 1993.
[18]  I. Magrath, M. Adde, A. Shad et al., “Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen,” Journal of Clinical Oncology, vol. 14, no. 3, pp. 925–934, 1996.
[19]  S. P. Stenning, G. M. Mead, D. Wright et al., “An international evaluation of CODOX-M and CODOX-M alternating with IVAC in adult Burkitt's lymphoma: results of United Kingdom Lymphoma Group LY06 study,” Annals of Oncology, vol. 13, no. 8, pp. 1264–1274, 2002.
[20]  H. W. Pees, H. Radtke, J. Schwamborn, and N. Graf, “The BFM-protocol for HIV-negative Burkitt's lymphomas and L3 ALL in adult patients: a high chance for cure,” Annals of Hematology, vol. 65, no. 5, pp. 201–205, 1992.
[21]  D. A. Thomas, J. Cortes, S. O'Brien et al., “Hyper-CVAD program in Burkitt's-type adult acute lymphoblastic leukemia,” Journal of Clinical Oncology, vol. 17, no. 8, pp. 2461–2470, 1999.
[22]  M. Diviné, P. Casassus, S. Koscielny et al., “Burkitt lymphoma in adults: a prospective study of 72 patients treated with an adapted pediatric LMB protocol,” Annals of Oncology, vol. 16, no. 12, pp. 1928–1935, 2005.
[23]  A. S. Perkins and J. W. Friedberg, “Burkitt lymphoma in adults,” Hematology / the Education Program of the American Society of Hematology. American Society of Hematology, pp. 341–348, 2008.
[24]  A. Neri, F. Barriga, D. M. Knowles, I. T. Magrath, and R. Dalla-Favera, “Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 8, pp. 2748–2752, 1988.
[25]  A. Gerbitz, J. Mautner, C. Geltinger et al., “Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt's lymphoma,” Oncogene, vol. 18, no. 9, pp. 1745–1753, 1999.
[26]  J. L. Hecht and J. C. Aster, “Molecular biology of Burkitt's lymphoma,” Journal of Clinical Oncology, vol. 18, no. 21, pp. 3707–3721, 2000.
[27]  M. H. H. Kramer, J. Hermans, E. Wijburg et al., “Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma,” Blood, vol. 92, no. 9, pp. 3152–3162, 1998.
[28]  I. S. Lossos, “Molecular pathogenesis of diffuse large B-cell lymphoma,” Journal of Clinical Oncology, vol. 23, no. 26, pp. 6351–6357, 2005.
[29]  L. M. Morton, S. S. Wang, S. S. Devesa, P. Hartge, D. D. Weisenburger, and M. S. Linet, “Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001,” Blood, vol. 107, no. 1, pp. 265–276, 2006.
[30]  A. Rosenwald, G. Wright, W. C. Chan et al., “The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma,” The New England Journal of Medicine, vol. 346, no. 25, pp. 1937–1947, 2002.
[31]  A. Rosenwald, G. Wright, K. Leroy et al., “Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma,” Journal of Experimental Medicine, vol. 198, no. 6, pp. 851–862, 2003.
[32]  G. Wright, B. Tan, A. Rosenwald, E. H. Hurt, A. Wiestner, and L. M. Staudt, “A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 17, pp. 9991–9996, 2003.
[33]  A. A. Alizadeh, M. B. Elsen, R. E. Davis et al., “Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,” Nature, vol. 403, no. 6769, pp. 503–511, 2000.
[34]  I. S. Lossos, A. A. Alizadeh, M. B. Eisen et al., “Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 10209–10213, 2000.
[35]  J. Z. Huang, W. G. Sanger, T. C. Greiner et al., “The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile,” Blood, vol. 99, no. 7, pp. 2285–2290, 2002.
[36]  K. J. Savage, S. Monti, J. L. Kutok et al., “The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma,” Blood, vol. 102, no. 12, pp. 3871–3879, 2003.
[37]  R. E. Davis, K. D. Brown, U. Siebenlist, and L. M. Staudt, “Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells,” Journal of Experimental Medicine, vol. 194, no. 12, pp. 1861–1874, 2001.
[38]  L. M. Staudt and S. Dave, “The biology of human lymphoid malignancies revealed by gene expression profiling,” Advances in Immunology, vol. 87, pp. 163–208, 2005.
[39]  S. S. Dave, K. Fu, G. W. Wright et al., “Molecular diagnosis of Burkitt's lymphoma,” The New England Journal of Medicine, vol. 354, no. 23, pp. 2431–2442, 2006.
[40]  M. Hummel, S. Bentink, H. Berger et al., “A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling,” The New England Journal of Medicine, vol. 354, no. 23, pp. 2419–2430, 2006.
[41]  A. Rosenwald and G. Ott, “Burkitt lymphoma versus diffuse large B-cell lymphoma,” Annals of Oncology, vol. 19, supplement 4, pp. iv67–iv69, 2008.
[42]  L. Colomo, A. López-Guillermo, M. Perales et al., “Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma,” Blood, vol. 101, no. 1, pp. 78–84, 2003.
[43]  C. P. Hans, D. D. Weisenburger, T. C. Greiner et al., “Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray,” Blood, vol. 103, no. 1, pp. 275–282, 2004.
[44]  J. J. F. Muris, C. J. L. M. Meijer, W. Vos et al., “Immunohistochemical profiling based on Bcl-2, CD10 and MUMI expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma,” Journal of Pathology, vol. 208, no. 5, pp. 714–723, 2006.
[45]  W. W. L. Choi, D. D. Weisenburger, T. C. Greiner et al., “A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy,” Clinical Cancer Research, vol. 15, no. 17, pp. 5494–5502, 2009.
[46]  P. N. Meyer, K. Fu, T. C. Greiner et al., “Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 200–207, 2011.
[47]  G. Gutierrez-Garcia, T. Cardesa-Salzmann, F. Climent, et al., “Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy,” Blood, vol. 117, no. 18, pp. 4836–4843, 2011.
[48]  P. P. Piccaluga, G. de Falco, M. Kustagi et al., “Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes,” Blood, vol. 117, no. 13, pp. 3596–3608, 2011.
[49]  K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano, “Reverse engineering of regulatory networks in human B cells,” Nature Genetics, vol. 37, no. 4, pp. 382–390, 2005.
[50]  K. Basso, M. Saito, P. Sumazin et al., “Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells,” Blood, vol. 115, no. 5, pp. 975–984, 2010.
[51]  K. Basso, U. Klein, H. Niu et al., “Tracking CD40 signaling during germinal center development,” Blood, vol. 104, no. 13, pp. 4088–4096, 2004.
[52]  P. P. Piccaluga, C. Agostinelli, A. Califano et al., “Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 823–834, 2007.
[53]  M. S. Tsai, D. F. Bogart, J. M. Casta?eda, P. Li, and R. Lupu, “Cyr61 promotes breast tumorigenesis and cancer progression,” Oncogene, vol. 21, no. 53, pp. 8178–8185, 2002.
[54]  M. T. Lin, C. C. Chang, S. T. Chen et al., “Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-κB-dependent XIAP up-regulation,” Journal of Biological Chemistry, vol. 279, no. 23, pp. 24015–24023, 2004.
[55]  A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006.
[56]  Y. Zhao and D. Srivastava, “A developmental view of microRNA function,” Trends in Biochemical Sciences, vol. 32, no. 4, pp. 189–197, 2007.
[57]  G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004.
[58]  J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005.
[59]  S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006.
[60]  E. Leucci, A. Onnis, M. Cocco et al., “B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression,” International Journal of Cancer, vol. 126, no. 6, pp. 1316–1326, 2010.
[61]  A. Onnis, G. de Falco, G. Antonicelli et al., “Alteration of microRNAs regulated by c-Myc in Burkitt lymphoma,” PLoS ONE, vol. 5, no. 9, Article ID e12960, 2010.
[62]  G. de Falco, G. Antonicelli, A. Onnis, S. Lazzi, C. Bellan, and L. Leoncini, “Role of EBV in microRNA dysregulation in Burkitt lymphoma,” Seminars in Cancer Biology, vol. 19, no. 6, pp. 401–406, 2009.
[63]  E. Leucci, M. Cocco, A. Onnis et al., “MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation,” Journal of Pathology, vol. 216, no. 4, pp. 440–450, 2008.
[64]  J. L. Robertus, J. Kluiver, C. Weggemans et al., “MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma,” British Journal of Haematology, vol. 149, no. 6, pp. 896–899, 2010.
[65]  D. Hasenclever and V. Diehl, “A prognostic score for advanced Hodgkin's disease. International Prognostic Factors Project on Advanced Hodgkin's Disease,” The New England Journal of Medicine, vol. 339, no. 21, pp. 1506–1514, 1998.
[66]  D. W. Sevilla, J. Z. Gong, B. K. Goodman et al., “Clinicopathologic findings in high-grade B-cell lymphomas with typical Burkitt morphologic features but lacking the MYC translocation,” American Journal of Clinical Pathology, vol. 128, no. 6, pp. 981–991, 2007.
[67]  P. Sethupathy, B. Corda, and A. G. Hatzigeorgiou, “TarBase: a comprehensive database of experimentally supported animal microRNA targets,” RNA, vol. 12, no. 2, pp. 192–197, 2006.
[68]  V. Ambros, B. Bartel, D. P. Bartel et al., “A uniform system for microRNA annotation,” RNA, vol. 9, no. 3, pp. 277–279, 2003.
[69]  L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007.
[70]  G. Leone, J. DeGregori, R. Sears, L. Jakoi, and J. R. Nevins, “Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F,” Nature, vol. 387, no. 6631, pp. 422–426, 1997.
[71]  H. A. Coller, J. J. Forman, and A. Legesse-Miller, ““Myc'ed messages”: myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron,” PLoS Genetics, vol. 3, no. 8, p. e146, 2007.
[72]  U. Lehmann, B. Hasemeier, M. Christgen et al., “Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer,” Journal of Pathology, vol. 214, no. 1, pp. 17–24, 2008.
[73]  C. Xiao, D. P. Calado, G. Galler et al., “MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb,” Cell, vol. 131, no. 1, pp. 146–159, 2007.
[74]  S. Sander, L. Bullinger, K. Klapproth et al., “MYC stimulates EZH2 expression by repression of its negative regulator miR-26a,” Blood, vol. 112, no. 10, pp. 4202–4212, 2008.
[75]  Y. Dorsett, K. M. McBride, M. Jankovic et al., “MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation,” Immunity, vol. 28, no. 5, pp. 630–638, 2008.
[76]  C. H. Lawrie, J. Chi, S. Taylor et al., “Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma,” Journal of Cellular and Molecular Medicine, vol. 13, no. 7, pp. 1248–1260, 2009.
[77]  S. A. Ciafrè, S. Galardi, A. Mangiola et al., “Extensive modulation of a set of microRNAs in primary glioblastoma,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1351–1358, 2005.
[78]  H. He, K. Jazdzewski, W. Li et al., “The role of microRNA genes in papillary thyroid carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19075–19080, 2005.
[79]  S. Costinean, N. Zanesi, Y. Pekarsky et al., “Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7024–7029, 2006.
[80]  N. Felli, L. Fontana, E. Pelosi et al., “MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18081–18086, 2005.
[81]  A. Roehle, K. P. Hoefig, D. Repsilber et al., “MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas,” British Journal of Haematology, vol. 142, no. 5, pp. 732–744, 2008.
[82]  A. Rodriguez, E. Vigorito, S. Clare et al., “Requirement of bic/microRNA-155 for normal immune function,” Science, vol. 316, no. 5824, pp. 608–611, 2007.
[83]  T. H. Thai, D. P. Calado, S. Casola et al., “Regulation of the germinal center response by MicroRNA-155,” Science, vol. 316, no. 5824, pp. 604–608, 2007.
[84]  D. Rai, S. Karanti, I. Jung, P. L. M. Dahia, and R. C. T. Aguiar, “Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma,” Cancer Genetics and Cytogenetics, vol. 181, no. 1, pp. 8–15, 2008.
[85]  A. Giannakakis, R. Sandaltzopoulos, J. Greshock et al., “miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer,” Cancer Biology and Therapy, vol. 7, no. 2, pp. 255–264, 2008.
[86]  B. Zhou, S. Wang, C. Mayr, D. P. Bartel, and H. F. Lodish, “miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7080–7085, 2007.
[87]  E. Bandrés, E. Cubedo, X. Agirre et al., “Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues,” Molecular Cancer, vol. 5, p. 29, 2006.
[88]  S. Debernardi, S. Skoulakis, G. Molloy, T. Chaplin, A. Dixon-McIver, and B. D. Young, “MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis,” Leukemia, vol. 21, no. 5, pp. 912–916, 2007.
[89]  L. Gramantieri, M. Ferracin, F. Fornari et al., “Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma,” Cancer Research, vol. 67, no. 13, pp. 6092–6099, 2007.
[90]  K. A. O'Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, and J. T. Mendell, “c-Myc-regulated microRNAs modulate E2F1 expression,” Nature, vol. 435, no. 7043, pp. 839–843, 2005.
[91]  Y. Saito, G. Liang, G. Egger et al., “Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells,” Cancer Cell, vol. 9, no. 6, pp. 435–443, 2006.
[92]  P. S. Eis, W. Tam, L. Sun et al., “Accumulation of miR-155 and BIC RNA in human B cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 10, pp. 3627–3632, 2005.
[93]  R. Malumbres, K. A. Sarosiek, E. Cubedo et al., “Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas,” Blood, vol. 113, no. 16, pp. 3754–3764, 2009.
[94]  Y. Natkunam, S. Zhao, D. Y. Mason et al., “The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas,” Blood, vol. 109, no. 4, pp. 1636–1642, 2007.
[95]  Y. Natkunam, P. Farinha, E. D. Hsi et al., “LMO2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy with and without rituximab,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 447–454, 2008.
[96]  C. H. Lawrie, N. J. Saunders, S. Soneji et al., “MicroRNA expression in lymphocyte development and malignancy,” Leukemia, vol. 22, no. 7, pp. 1440–1446, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413