Exposure to arsenic (As) through drinking water is a substantial problem worldwide. The methylation of As, a reactive metalloid, generates monomethyl- (MMA) and dimethyl-arsenical (DMA) species. The biochemical pathway that catalyzes these reactions, one-carbon metabolism, is regulated by folate and other micronutrients. Arsenic methylation exerts a critical influence on both its urinary elimination and chemical reactivity. Mice having the As methyltransferase null genotype show reduced urinary As excretion, increased As retention, and severe systemic toxicity. The most toxic As metabolite in vitro is M M A I I I , an intermediate in the generation of D M A V , a much less toxic metabolite. These findings have raised the question of whether As methylation is a detoxification or bioactivation pathway. Results of population-based studies suggest that complete methylation of inorganic As to DMA is associated with reduced risk for As-induced health outcomes, and that nutrients involved in one-carbon metabolism, such as folate, can facilitate As methylation and elimination. 1. Introduction Arsenic (As) is a naturally occurring element commonly present in environmental sources such as air, water, and soil [1]. Through processes that are incompletely understood, As in soil can be mobilized leading to enrichment of As in groundwater. While drinking water is the most common source of exposure, other sources include As from mining and smelting, wood preservatives, pesticides, and foods irrigated and/or prepared with As-contaminated water. Current estimates suggest that roughly 140 million people in Bangladesh, India, Vietnam, Nepal, and Cambodia are drinking water with As concentrations up to 100 times the World Health Organization (WHO) and USA Environmental Protection Agency (EPA) guideline of 10?μg/L [2, 3]. Chile, Mexico, China, and Taiwan also have As in groundwater that is used for drinking. In comparison to the situation in South and East Asia, the magnitude of the problem in the USA is relatively small. Nevertheless, the US Geological Survey estimates that 42 million Americans obtain their drinking water from household wells, and roughly 15% of these wells exceed the WHO guideline, indicating that a large number of USA residents are exposed to excess As from household wells [4]. In addition, not all municipalities are yet in compliance with the EPA requirements, with up to 8% of all public water supplies exceeding 10?μg As/L. Individuals chronically exposed to As are at increased risk for various cancers, including cancers of the skin (Bowen’s disease,
References
[1]
S. M. Naqvi, C. Vaishnavi, and H. Singh, “Toxicity and metabolism of arsenic in vertebrates,” in Arsenic in the Environment, J. Nriagu, Ed., pp. 55–85, John Wiley & Sons, New York, NY, USA, 1994.
[2]
M. F. Ahmed, S. Ahuja, M. Alauddin et al., “Ensuring safe drinking water in Bangladesh,” Science, vol. 314, no. 5806, pp. 1687–1688, 2006.
[3]
D. G. Kinniburgh and P. L. Smedley, “Arsenic contamination of groundwater in Bangladesh,” Tech. Rep. WC/00/19, British Geological Survey, Keyworth, UK, 2001.
[4]
M. J. Focazio, A. H. Welch, S. A. Watkins, D. R. Helsel, and M. A. Horn, “A retrospective analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations: U.S. Geological Survey Water-Resources Investigation,” Tech. Rep. 99-4279, USGS, 1999.
[5]
Y. M. Hsueh, H. Y. Chiou, Y. L. Huang et al., “Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 6, no. 8, pp. 589–596, 1997.
[6]
National Research Council, Arsenic in Drinking Water, National Academy of Sciences, Washington, DC, USA, 2001.
[7]
Y. M. Hsueh, W. L. Wu, Y. L. Huang, H. Y. Chiou, C. H. Tseng, and C. J. Chen, “Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure,” Atherosclerosis, vol. 141, no. 2, pp. 249–257, 1998.
[8]
W. P. Tseng, “Effects and dose—response relationships of skin cancer and blackfoot disease with arsenic,” Environmental Health Perspectives, vol. 19, pp. 109–119, 1977.
[9]
F. Challenger, “Biological methylation,” Chemical Reviews, vol. 36, no. 3, pp. 315–361, 1945.
[10]
F. Challenger, “Biological methylation,” Advances in Enzymology and Related Subjects of Biochemistry, vol. 12, no. 3, pp. 429–491, 1951.
[11]
D. J. Thomas, J. Li, S. B. Waters et al., “Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals,” Experimental Biology and Medicine, vol. 232, no. 1, pp. 3–13, 2007.
[12]
S. Lin, Q. Shi, F. B. Nix et al., “A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol,” Journal of Biological Chemistry, vol. 277, no. 13, pp. 10795–10803, 2002.
[13]
S. B. Waters, V. Devesa, L. M. del Razo, M. Styblo, and D. J. Thomas, “Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase,” Chemical Research in Toxicology, vol. 17, no. 3, pp. 404–409, 2004.
[14]
R. A. Zakharyan and H. V. Aposhian, “Enzymatic reduction of arsenic compounds in mammalian systems: the rate- limiting enzyme of rabbit liver arsenic biotransformation is MMA(V) reductase,” Chemical Research in Toxicology, vol. 12, no. 12, pp. 1278–1283, 1999.
[15]
R. A. Zakharyan, A. Sampayo-Reyes, S. M. Healy et al., “Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily,” Chemical Research in Toxicology, vol. 14, no. 8, pp. 1051–1057, 2001.
[16]
R. Zakharyan, Y. Wu, G. M. Bogdan, and H. V. Aposhian, “Enzymatic methylation of arsenic compounds: assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver,” Chemical Research in Toxicology, vol. 8, no. 8, pp. 1029–1038, 1995.
[17]
R. A. Zakharyan, F. Ayala-Fierro, W. R. Cullen, D. M. Carter, and H. V. Aposhian, “Enzymatic methylation of arsenic compounds. VII. Monomethylarsonous acid ( ) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes,” Toxicology and Applied Pharmacology, vol. 158, no. 1, pp. 9–15, 1999.
[18]
L. M. del Razo, M. Styblo, W. R. Cullen, and D. J. Thomas, “Determination of trivalent methylated arsenicals in biological matrices,” Toxicology and Applied Pharmacology, vol. 174, no. 3, pp. 282–293, 2001.
[19]
B. K. Mandal, Y. Ogra, and K. T. Suzuki, “Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India,” Chemical Research in Toxicology, vol. 14, no. 4, pp. 371–378, 2001.
[20]
O. L. Valenzuela, V. H. Borja-Aburto, G. G. Garcia-Vargas et al., “Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic,” Environmental Health Perspectives, vol. 113, no. 3, pp. 250–254, 2005.
[21]
R. Raml, A. Rumpler, W. Goessler et al., “Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh,” Toxicology and Applied Pharmacology, vol. 222, no. 3, pp. 374–380, 2007.
[22]
Z. Gong, X. Lu, W. R. Cullen, and X. C. Le, “Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid,” Journal of Analytical Atomic Spectrometry, vol. 16, no. 12, pp. 1409–1413, 2001.
[23]
H. R. Hansen, A. Raab, M. Jaspars, B. F. Milne, and J. Feldmann, “Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA(III)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity,” Chemical Research in Toxicology, vol. 17, no. 8, pp. 1086–1091, 2004.
[24]
T. Hayakawa, Y. Kobayashi, X. Cui, and S. Hirano, “A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19,” Archives of Toxicology, vol. 79, no. 4, pp. 183–191, 2005.
[25]
H. Naranmandura, N. Suzuki, and K. T. Suzuki, “Trivalent arsenicals are bound to proteins during reductive methylation,” Chemical Research in Toxicology, vol. 19, no. 8, pp. 1010–1018, 2006.
[26]
Z. Drobna, H. Naranmandura, K. M. Kubachka et al., “Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate,” Chemical Research in Toxicology, vol. 22, no. 10, pp. 1713–1720, 2009.
[27]
M. F. Hughes, B. C. Edwards, K. M. Herbin-Davis, J. Saunders, M. Styblo, and D. J. Thomas, “Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice,” Toxicology and Applied Pharmacology, vol. 249, no. 3, pp. 217–223, 2010.
[28]
M. Yokohira, L. L. Arnold, K. L. Pennington et al., “Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+3 oxidation state) methyltransferase knockout mice. A preliminary report,” Toxicology and Applied Pharmacology, vol. 246, no. 1-2, pp. 1–7, 2010.
[29]
T. S. Pinyayev, M. J. Kohan, K. Herbin-Davis, J. T. Creed, and D. J. Thomas, “Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals,” Chemical Research in Toxicology, vol. 24, no. 4, pp. 475–477, 2011.
[30]
C. Pomroy, S. M. Charbonneau, R. S. McCullough, and G. K. Tam, “Human retention studies with 74As,” Toxicology and Applied Pharmacology, vol. 53, no. 3, pp. 550–556, 1980.
[31]
A. Lindgren, M. Vahter, and L. Dencker, “Autoradiographic studies on the distribution of arsenic in mice and hamsters administered 74As-arsenite or -arsenate,” Acta Pharmacologica et Toxicologica, vol. 51, no. 3, pp. 253–265, 1982.
[32]
H. Yamauchi and B. A. Fowler, “Toxicity and metabolism of inorganic and methylated arsenicals,” in Arsenic in the Environment, J. Nriagu, Ed., pp. 35–53, John Wiley & Sons, New York, NY, USA, 1994.
[33]
J. M. Ginsburg and W. D. Lotspeich, “Interrelations of arsenate and phosphate transport in the dog kidney,” The American Journal of Physiology, vol. 205, pp. 707–714, 1963.
[34]
J. M. Ginsburg, “Renal mechanism for excretion and transformation of arsenic in the dog,” The American Journal of Physiology, vol. 208, pp. 832–840, 1965.
[35]
J. M. Ginsburg, “Effect of metabolic alkalosis and acidosis on renal transport of arsenic,” The American Journal of Physiology, vol. 212, no. 6, pp. 1334–1340, 1967.
[36]
D. E. Carter, H. V. Aposhian, and A. J. Gandolfi, “The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review,” Toxicology and Applied Pharmacology, vol. 193, no. 3, pp. 309–334, 2003.
[37]
H. V. Aposhian and M. M. Aposhian, “Arsenic toxicology: five questions,” Chemical Research in Toxicology, vol. 19, no. 1, pp. 1–15, 2006.
[38]
H. B. Dixon, “The biochemical action of arsonic acids especially as phosphate analogues,” Advances in Inorganic Chemistry, vol. 44, no. C, pp. 191–227, 1996.
[39]
T. K. Hei, S. X. Liu, and C. Waldren, “Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 14, pp. 8103–8107, 1998.
[40]
M. Kessel, S. X. Liu, A. Xu, R. Santella, and T. K. Hei, “Arsenic induces oxidative DNA damage in mammalian cells,” Molecular and Cellular Biochemistry, vol. 234-235, pp. 301–308, 2002.
[41]
J. F. Reichard and A. Puga, “Effects of arsenic exposure on DNA methylation and epigenetic gene regulation,” Epigenomics, vol. 2, no. 1, pp. 87–104, 2010.
[42]
X. Ren, C. M. Mchale, C. F. Skibola, A. H. Smith, M. T. Smith, and L. Zhang, “An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis,” Environmental Health Perspectives, vol. 119, no. 1, pp. 11–19, 2011.
[43]
A. P. Arrigo, “Acetylation and methylation patterns of core histones are modified after heat or arsenite treatment of Drosophila tissue culture cells,” Nucleic Acids Research, vol. 11, no. 5, pp. 1389–1404, 1983.
[44]
F. Chu, A. Chasse, and T. Hickman, “Quantitative mass spectrometry reveals the epigenome as a target of arsenic,” Chemico-Biological Interactions, vol. 192, no. 1-2, pp. 113–117, 2011.
[45]
R. Desrosiers and R. M. Tanguay, “Further characterization of the posttranslational modifications of core histones in response to heat and arsenite stress in Drosophila,” Biochemistry and Cell Biology, vol. 64, no. 8, pp. 750–757, 1986.
[46]
R. Desrosiers and R. M. Tanguay, “Methylation of Drosophila histones at proline, lysine, and arginine residues during heat shock,” Journal of Biological Chemistry, vol. 263, no. 10, pp. 4686–4692, 1988.
[47]
T. J. Jensen, P. Novak, K. E. Eblin, A. J. Gandolfi, and B. W. Futscher, “Epigenetic remodeling during arsenical-induced malignant transformation,” Carcinogenesis, vol. 29, no. 8, pp. 1500–1508, 2008.
[48]
T. J. Jensen, R. J. Wozniak, K. E. Eblin, S. M. Wnek, A. J. Gandolfi, and B. W. Futscher, “Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation,” Toxicology and Applied Pharmacology, vol. 235, no. 1, pp. 39–46, 2009.
[49]
W. J. Jo, A. Loguinov, H. Wintz et al., “Comparative functional genomic analysis identifies distinct and overlapping sets of genes required for resistance to monomethylarsonous acid ( ) and arsenite ( ) in yeast,” Toxicological Sciences, vol. 111, no. 2, pp. 424–436, 2009.
[50]
W. J. Jo, X. Ren, F. Chu et al., “Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure,” Toxicology and Applied Pharmacology, vol. 241, no. 3, pp. 294–302, 2009.
[51]
J. Li, M. Gorospe, J. Barnes, and Y. Liu, “Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts,” Journal of Biological Chemistry, vol. 278, no. 15, pp. 13183–13191, 2003.
[52]
J. R. Pilsner, X. Liu, H. Ahsan et al., “Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults,” American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 1179–1186, 2007.
[53]
J. R. Pilsner, X. Liu, H. Ahsan et al., “Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions,” Environmental Health Perspectives, vol. 117, no. 2, pp. 254–260, 2009.
[54]
T. Ramirez, J. Brocher, H. Stopper, and R. Hock, “Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells,” Chromosoma, vol. 117, no. 2, pp. 147–157, 2008.
[55]
X. Zhou, H. Sun, H. Chen, Q. Li, and M. Costa, “Arsenite alters global histone H3 methylation,” in Proceedings of the 99th Annual Meeting of the American Assocation for Cancer Research, San Diego, Calif, USA, 2008.
[56]
X. Zhou, H. Sun, T. P. Ellen, H. Chen, and M. Costa, “Arsenite alters global histone H3 methylation,” Carcinogenesis, vol. 29, no. 9, pp. 1831–1836, 2008.
[57]
X. Zhou, A. Arita, T. P. Ellen et al., “A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity,” Genomics, vol. 94, no. 5, pp. 294–307, 2009.
[58]
X. Zhou, Q. Li, A. Arita, H. Sun, and M. Costa, “Effects of nickel, chromate, and arsenite on histone 3 lysine methylation,” Toxicology and Applied Pharmacology, vol. 236, no. 1, pp. 78–84, 2009.
[59]
E. J. Tokar, W. Qu, and M. P. Waalkes, “Arsenic, stem cells, and the developmental basis of adult cancer,” Toxicological Sciences, vol. 120, supplement 1, pp. S192–S203, 2011.
[60]
M. Styblo, L. M. del Razo, L. Vega et al., “Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells,” Archives of Toxicology, vol. 74, no. 6, pp. 289–299, 2000.
[61]
J. S. Petrick, F. Ayala-Fierro, W. R. Cullen, D. E. Carter, and V. H. Aposhian, “Monomethylarsonous acid ( ) is more toxic than arsenite in chang human hepatocytes,” Toxicology and Applied Pharmacology, vol. 163, no. 2, pp. 203–207, 2000.
[62]
J. S. Petrick, B. Jagadish, E. A. Mash, and H. V. Aposhian, “Monomethylarsonous acid ( ) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase,” Chemical Research in Toxicology, vol. 14, no. 6, pp. 651–656, 2001.
[63]
L. Vega, M. Styblo, R. Patterson, W. Cullen, C. Wang, and D. Germolec, “Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes,” Toxicology and Applied Pharmacology, vol. 172, no. 3, pp. 225–232, 2001.
[64]
S. Ahmad, K. T. Kitchin, and W. R. Cullen, “Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin,” Toxicology Letters, vol. 133, no. 1, pp. 47–57, 2002.
[65]
M. J. Mass, A. Tennant, B. C. Roop et al., “Methylated trivalent arsenic species are genotoxic,” Chemical Research in Toxicology, vol. 14, no. 4, pp. 355–361, 2001.
[66]
S. Nesnow, B. C. Roop, G. Lambert et al., “DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species,” Chemical Research in Toxicology, vol. 15, no. 12, pp. 1627–1634, 2002.
[67]
T. Ochi, T. Suzuki, H. Isono, C. Schlagenhaufen, W. Goessler, and T. Tsutsui, “Induction of structural and numerical changes of chromosome, centrosome abnormality, multipolar spindles and multipolar division in cultured Chinese hamster V79 cells by exposure to a trivalent dimethylarsenic compound,” Mutation Research, vol. 530, no. 1-2, pp. 59–71, 2003.
[68]
K. Yamanaka, F. Takabayashi, M. Mizoi, Y. An, A. Hasegawa, and S. Okada, “Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-oxo-2'-deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis,” Biochemical and Biophysical Research Communications, vol. 287, no. 1, pp. 66–70, 2001.
[69]
S. M. Cohen, S. Yamamoto, M. Cano, and L. L. Arnold, “Urothelial cytotoxicity and regeneration induced by dimethylarsinic acid in rats,” Toxicological Sciences, vol. 59, no. 1, pp. 68–74, 2001.
[70]
S. M. Cohen, L. L. Arnold, M. Eldan, A. S. Lewis, and B. D. Beck, “Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment,” Critical Reviews in Toxicology, vol. 36, no. 2, pp. 99–133, 2006.
[71]
E. W. McDorman, B. W. Collins, and J. W. Allen, “Dietary folate deficiency enhances induction of micronuclei by arsenic in mice,” Environmental and Molecular Mutagenesis, vol. 40, no. 1, pp. 71–77, 2002.
[72]
T. Ramirez, V. Garcia-Montalvo, C. Wise, R. Cea-Olivares, L. A. Poirier, and L. A. Herrera, “S-adenosyl-L-methionine is able to reverse micronucleus formation induced by sodium arsenite and other cytoskeleton disrupting agents in cultured human cells,” Mutation Research, vol. 528, no. 1-2, pp. 61–74, 2003.
[73]
G. M. Nelson, G. J. Ahlborn, D. A. Delker et al., “Folate deficiency enhances arsenic effects on expression of genes involved in epidermal differentiation in transgenic K6/ODC mouse skin,” Toxicology, vol. 241, no. 3, pp. 134–145, 2007.
[74]
H. Ahsan, Y. Chen, M. G. Kibriya et al., “Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 6, pp. 1270–1278, 2007.
[75]
Y. C. Chen, Y. L. Guo, H. J. Su et al., “Arsenic methylation and skin cancer risk in Southwestern Taiwan,” Journal of Occupational and Environmental Medicine, vol. 45, no. 3, pp. 241–248, 2003.
[76]
Y. C. Chen, H. J. Su, Y. L. Guo et al., “Arsenic methylation and bladder cancer risk in Taiwan,” Cancer Causes and Control, vol. 14, no. 4, pp. 303–310, 2003.
[77]
Y. K. Huang, Y. S. Pu, C. J. Chung et al., “Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility,” Food and Chemical Toxicology, vol. 46, no. 3, pp. 929–938, 2008.
[78]
C. H. Tseng, Y. K. Huang, Y. L. Huang et al., “Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan,” Toxicology and Applied Pharmacology, vol. 206, no. 3, pp. 299–308, 2005.
[79]
R. C. Yu, K. H. Hsu, C. J. Chen, and J. R. Froines, “Arsenic methylation capacity and skin cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 11, pp. 1259–1262, 2000.
[80]
A. L. Lindberg, M. Rahman, L. A. Persson, and M. Vahter, “The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure,” Toxicology and Applied Pharmacology, vol. 230, no. 1, pp. 9–16, 2008.
[81]
K. M. McCarty, Y. C. Chen, Q. Quamruzzaman et al., “Arsenic methylation, GSTT1, GSTM1, GSTP1 polymorphisms, and skin lesions,” Environmental Health Perspectives, vol. 115, no. 3, pp. 341–345, 2007.
[82]
Y. S. Pu, S. M. Yang, Y. K. Huang et al., “Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure,” Toxicology and Applied Pharmacology, vol. 218, no. 2, pp. 99–106, 2007.
[83]
C. Steinmaus, M. N. Bates, Y. Yuan et al., “Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States,” Journal of Occupational and Environmental Medicine, vol. 48, no. 5, pp. 478–488, 2006.
[84]
C. Steinmaus, Y. Yuan, D. Kalman et al., “Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina,” Toxicology and Applied Pharmacology, vol. 247, no. 2, pp. 138–145, 2010.
[85]
M. M. Wu, H. Y. Chiou, Y. M. Hsueh et al., “Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis,” Toxicology and Applied Pharmacology, vol. 216, no. 1, pp. 168–175, 2006.
[86]
M. Vahter and E. Marafante, “Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit,” Toxicology Letters, vol. 37, no. 1, pp. 41–46, 1987.
[87]
R. R. Tice, J. W. Yager, P. Andrews, and E. Crecelius, “Effect of hepatic methyl donor status on urinary excretion and DNA damage in B6C3F1 mice treated with sodium arsenite,” Mutation Research, vol. 386, no. 3, pp. 315–334, 1997.
[88]
O. Spiegelstein, X. Lu, X. C. Le et al., “Effects of dietary folate intake and folate binding protein-1 (Folbp1) on urinary speciation of sodium arsenate in mice,” Toxicology Letters, vol. 145, no. 2, pp. 167–174, 2003.
[89]
O. Spiegelstein, X. Lu, X. C. Le et al., “Effects of dietary folate intake and folate binding protein-2 (Folbp2) on urinary speciation of sodium arsenate in mice,” Environmental Toxicology and Pharmacology, vol. 19, no. 1, pp. 1–7, 2005.
[90]
B. Wlodarczyk, O. Spiegelstein, W. J. Gelineau-van et al., “Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice,” Toxicology and Applied Pharmacology, vol. 177, no. 3, pp. 238–246, 2001.
[91]
O. Spiegelstein, A. Gould, B. Wlodarczyk et al., “Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies,” Toxicology and Applied Pharmacology, vol. 203, no. 1, pp. 18–26, 2005.
[92]
Z. Drobná, F. S. Walton, A. W. Harmon, D. J. Thomas, and M. Styblo, “Interspecies differences in metabolism of arsenic by cultured primary hepatocytes,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 47–56, 2010.
[93]
O. F. Brouwer, W. Onkenhout, P. M. Edelbroek, J. F. de Kom, F. A. de Wolff, and A. C. Peters, “Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency,” Clinical Neurology and Neurosurgery, vol. 94, no. 4, pp. 307–310, 1992.
[94]
J. S. Chung, D. A. Kalman, L. E. Moore, et al., “Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water,” Environmental Health Perspectives, vol. 110, no. 9, pp. 729–733, 2002.
[95]
C. Steinmaus, K. Carrigan, D. Kalman, R. Atallah, Y. Yuan, and A. H. Smith, “Dietary intake and arsenic methylation in a U.S. population,” Environmental Health Perspectives, vol. 113, no. 9, pp. 1153–1159, 2005.
[96]
L. Li, E. C. Ekstrom, W. Goessler et al., “Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women,” Environmental Health Perspectives, vol. 116, no. 3, pp. 315–321, 2008.
[97]
R. M. Gardner, B. Nermell, M. Kippler, et al., “Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status,” Reproductive Toxicology, vol. 31, pp. 210–218, 2011.
[98]
S. H. Zeisel, “Importance of methyl donors during reproduction,” American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 673S–677S, 2009.
[99]
M. V. Gamble, H. Ahsan, X. Liu et al., “Folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh,” American Journal of Clinical Nutrition, vol. 81, no. 6, pp. 1372–1377, 2005.
[100]
J. C. Chambers, O. A. Obeid, H. Refsum et al., “Plasma homocysteine concentrations and risk of coronary heart disease in UK Indian Asian and European men,” Lancet, vol. 355, no. 9203, pp. 523–527, 2000.
[101]
M. V. Gamble, X. Liu, and H. Ahsan, “Folate, homocysteine and arsenic metabolism in Bangladesh,” Environmental Health Perspectives, vol. 113, pp. 1683–1688, 2005.
[102]
M. V. Gamble and X. Liu, “Letter re: urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements,” Environmental Health Perspectives, vol. 113, no. 2, pp. 192–200, 2005.
[103]
M. V. Gamble, X. Liu, H. Ahsan et al., “Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh,” American Journal of Clinical Nutrition, vol. 84, no. 5, pp. 1093–1101, 2006.
[104]
M. N. Hall, X. Liu, V. Slavkovich et al., “Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in Bangladesh,” Environmental Health Perspectives, vol. 117, no. 5, pp. 825–831, 2009.
[105]
A. Basu, S. Mitra, J. Chung, et al., “Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India,” Environmental Health Perspectives, vol. 119, no. 9, pp. 1308–1313, 2011.
[106]
S. H. Mudd and J. R. Poole, “Labile methyl balances for normal humans on various dietary regimens,” Metabolism, vol. 24, no. 6, pp. 721–735, 1975.
[107]
M. V. Gamble, X. Liu, V. Slavkovich et al., “Folic acid supplementation lowers blood arsenic,” American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 1202–1209, 2007.
[108]
S. R. Mitra, D. N. Mazumder, A. Basu et al., “Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1104–1109, 2004.
[109]
J. S. Chung, R. Haque, D. N. Guha Mazumder et al., “Blood concentrations of methionine, selenium, beta-carotene, and other micronutrients in a case-control study of arsenic-induced skin lesions in West Bengal, India,” Environmental Research, vol. 101, no. 2, pp. 230–237, 2006.