全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Electronics  2013 

Embroidered Coils for Magnetic Resonance Sensors

DOI: 10.3390/electronics2020168

Keywords: magnetic resonance, embroidered, high frequency coil, relaxation time

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T 1) and effective transverse (T 2 eff) relaxation times for a flat fabric coil and the same coil conformed to an 8?cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

References

[1]  Guy, A.W.; Chung-Kwang, C.; McDougall, J.A.; Sorensen, C. Measurement of shielding effectiveness of microwave-protective suits. IEEE Trans. Microw. Theory Tech. 1987, 35, 984–994, doi:10.1109/TMTT.1987.1133796.
[2]  Massey, P.J. GSM fabric antenna for mobile phones integrated within clothing. Proc. IEEE Antennas Propag. Soc. Int. Symp. 2001, 3, 452–455.
[3]  Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788, doi:10.1109/TADVP.2006.884780.
[4]  Hertleer, C.; Tronquo, A.; Rogier, H.; van Langenhove, L. The use of textile materials to design wearable microstrip patch antennas. Text. Res. J. 2008, 78, 651–658, doi:10.1177/0040517507083726.
[5]  Yang, L.; Vyas, R.; Rida, A.; Pan, J.; Tentzeris, M.M. Wearable RFID-Enabled Sensor Nodes for Biomedical Applications. In Proceedings of the 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 2156–2159.
[6]  Kaivanto, E.K. Wearable circularly polarized antenna for personal satellite communication and navigation. IEEE Trans. Antennas Propag. 2011, 12, 4490–4496, doi:10.1109/TAP.2011.2165513.
[7]  Lilja, J. Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans. Antennas Propag. 2012, 9, 4130–4140, doi:10.1109/TAP.2012.2207035.
[8]  Varnait?, S.; Katunskis, J. Influence of washing on the electric charge decay of fabrics with conductive yarns. Fibres Text. East. Eur. 2009, 17, 69–75.
[9]  Kleinberg, R.L.; Sezginer, A.; Griffin, D.D. Novel NMR apparatus for investigating an external sample. J. Magn. Reson. 1992, 97, 466–485.
[10]  Eidmann, G.; Savelsberg, R.; Blumler, P.; Blumich, B. The NMR MOUSE, a mobile universal surface explorer. J. Magn. Reson., Ser. A 1996, 122, 104–109, doi:10.1006/jmra.1996.0185.
[11]  Manz, B.; Coya, A.; Dykstrac, R.; Ecclesa, C.D.; Hunterd, M.W.; Parkinsond, B.J.; Callaghand, P.T. A mobile one-sided NMR sensor with a homogeneous magnetic field: The NMR-MOLE. J. Magn. Reson. 2006, 183, 25–31.
[12]  García-Naranjo, J.C.; Mastikhin, I.V.; Colpitts, B.G.; Balcom, B.J. A unilateral magnet with an extended constant magnetic field gradient. J. Magn. Reson. 2010, 207, 337–344.
[13]  Blümich, B.; Casanova, F. Mobile NMR. In Modern Magnetic Resonance Part I; Springer: Dordrecht, The Netherlands, 2006; pp. 369–377.
[14]  Van Landeghem, M.; Danieli, E.; Perlo, J.; Blümich, B.; Casanova, F. Low-gradient single-sided NMR sensor for one-shot profiling of human skin. J. Magn. Reson. 2012, 215, 74–84.
[15]  Geya, Y.; Kimura, T.; Fujisaki, H.; Terada, Y.; Kose, K.; Haishi, T.; Gemma, H.; Sekozawa, Y. Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system. J. Magn. Reson. 2013, 226, 45–51.
[16]  Callaghan, P.T. Principles of Nuclear Magnetic Resonance Microscopy; Oxford University Press: Oxford, UK, 1993.
[17]  Fukushima, E.; Roeder, S.B.W. Experimental Pulse Nuclear Magnetic Resonance: A Nuts and Bolts Approach; Westview Press: Boulder, CO, USA, 1981.
[18]  Blumich, B.; Blumler, P.; Eidmann, G.; Guthausen, A.; Haken, R.; Schmitz, U.; Saito, K.; Zimmer, G. The NMR-mouse: construction, excitation, and applications. Magn. Reson. Imaging. 1998, 16, 479–484, doi:10.1016/S0730-725X(98)00069-1.
[19]  Meiboom, S.; Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688–691.
[20]  Blumich, B. NMR Imaging of Materials; Oxford University Press: Oxford, UK, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413