全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Collaborative Exploration with a Micro Aerial Vehicle: A Novel Interaction Method for Controlling a MAV with a Hand-Held Device

DOI: 10.1155/2012/768180

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to collaboratively explore an environment with a Micro Aerial Vehicle (MAV), an operator needs a mobile interface, which can support the operator’s divided attention. To this end, we developed the Micro Aerial Vehicle Exploration of an Unknown Environment (MAV-VUE) interface, which allows operators with minimal training the ability to remotely explore their environment with a MAV. MAV-VUE employs a concept we term Perceived First-Order (PFO) control, which allows an operator to effectively “fly” a MAV with no risk to the vehicle. PFO control utilizes a position feedback control loop to fly the MAV while presenting rate feedback to the operator. A usability study was conducted to evaluate MAV-VUE. This interface was connected remotely to an actual MAV to explore a GPS-simulated urban environment. 1. Introduction Field personnel, such as emergency first responders, police, specialists (e.g., building inspectors or bomb technicians), or dismounted, forward-deployed soldiers, often rely on satellite-based maps to gain information prior to or during field operations. All of these groups operate in hazardous environments, which may contain hostile, armed people, unstable structures, or environmental disasters. Satellite maps, currently the standard for performing Intelligence, Surveillance and Reconnaissance (ISR) of an outdoor environment, have many inherent flaws. As a flat image, these maps give no elevation information, and often, due to shadows and shading, give false impressions of elevation. For example, while it can be safely assumed that roads approximate a level plane, the rest of an urban environment is often closer to a series of blocks of varying heights or depths with shadows cast by adjacent buildings. Building entrances and exits are hidden due to the birds-eye view of a satellite image, with little to no information about a building's exterior. Moreover, this imagery is often outdated or relevant only to the season in which the image was taken. Combined, these flaws often give field personnel a false mental model of their environment. Many of these flaws and dangers could be remedied by having field personnel operate a robot to locally explore and map their environment. Given the need of these personnel to simultaneously perform another primary task, such as looking out for snipers, an autonomous robot (i.e., an Unmanned Vehicle (UV)) would allow these groups to better perform ISR and improve their Situational Awareness (SA) in real time by reducing attention needed from operating the robot. However, performing an ISR mission aided

References

[1]  J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonnomous vehicle test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64, 2008.
[2]  T. Sheridan, Humans and Automation: System Design and Research Issues, John Wiley & Sons, New York, NY, USA, 2002.
[3]  M. L. Cummings, S. Bruni, S. Mercier, and P. J. Mitchell, “Automation architecture for single operator, multiple UAV command and control,” The International C2 Journal, vol. 1, no. 2, pp. 1–24, 2007.
[4]  T. Sheridan, Telerobotics, Automation, and Human Supervisory Control, MIT Press, Cambridge, Mass, USA, 1992.
[5]  J. Y. C. Chen, E. C. Haas, and M. J. Barnes, “Human performance issues and user interface design for teleoperated robots,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 37, no. 6, pp. 1231–1245, 2007.
[6]  T. Fong, N. Cabrol, C. Thorpe, and C. Baur, “A personal user interface for collaborative human-robot exploration,” in Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Automation in Space, Montréal, Canada, June 2001.
[7]  H. K. Keskinpala, J. A. Adams, and K. Kawamura, “PDA-based human-robotic interface,” in System Security and Assurance, vol. 4, pp. 3931–3936, October 2003.
[8]  J. A. Adams and H. Kaymaz-Keskinpala, “Analysis of perceived workload when using a PDA for mobile robot teleoperation,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’04), vol. 4, pp. 4128–4133, May 2004.
[9]  R. Gutierrez and J. Craighead, “A native iphone packbot OCU,” in Proceedings of the 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI '09), pp. 193–194, ACM, La Jolla, Calif, USA, March 2009.
[10]  B. J. O'Brien, C. Karan, and S. H. Young, “FOCUS—future operator control unit: soldier,” in Unmanned Systems Technology XI, G. R. Gerhart, D. W. Gage, and C. M. Shoemaker, Eds., vol. 7332 of Proceedings of SPIE, p. 733, 2009.
[11]  R. R. Murphy and J. L. Burke, “Up from the rubble: Lessons learned about HRI from search and rescue,” in Proceedings of the 49th Annual Meeting of the Human Factors and Ergonomics Society (HFES '05), vol. 49, pp. 437–441, September 2005.
[12]  P. Durlach, J. Neumann, and D. Billings, “Training to operate a simulated micro-unmanned aerial vehicle with continuous or discrete manual control,” Tech. Rep., U.S. Army Research Institute for the Behavioral and Social Sciences, January 2008.
[13]  T. B. Sheridan, “Space teleoperation through time delay: review and prognosis,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 592–606, 1993.
[14]  D. Pitman, Collaborative micro aerial vehicle exploration of outdoor environments [M.S. thesis], MIT, 2010.
[15]  R. J. Jagacinski and J. M. Flach, Control Theory for Humans: Quantitative Approaches to Modeling Performance, Lawrence Erlbaum Associates, Mahwah, NJ, USA, 2003.
[16]  T. Sheridan and W. Verplank, “Human and computer control of undersea teleoperators,” Tech. Rep., Office of Naval Research, January 1978.
[17]  S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control techniques applied to an indoor micro Quadrotor,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '04), vol. 3, pp. 2451–2456, June 2004.
[18]  M. Efe, “Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (MED '07), pp. 1–6, July 2007.
[19]  S. I. Erwin, “UAV Programs Illustrate DoD’s Broken Procurement System,” National Defense, vol. 2009, 2009.
[20]  H. A. Yanco and J. L. Drury, “Rescuing interfaces: a multi-year study of human-robot interaction at the AAAI Robot Rescue Competition,” Autonomous Robots, vol. 22, no. 4, pp. 333–352, 2007.
[21]  I. Jang and W. Park, “Gesture-based user interfaces for handheld devices using accelerometer,” in Advances in Multimedia Information Processing, vol. 3331, pp. 359–368, PCM, 2004.
[22]  M. Rahman, S. Gustafson, P. Irani, and S. Subramanian, “Tilt Techniques: investigating the dexterity of wrist-based input,” in Proceedings of the 27th International Conference on Human Factors in Computing Systems (CHI '09), pp. 1943–1952, ACM, Boston, Mass, USA, April 2009.
[23]  S. G. Vandenberg and A. R. Kuse, “Mental rotations, a group test of three-dimensional spatial visualization,” Perceptual and Motor Skills, vol. 47, no. 2, pp. 599–604, 1978.
[24]  M. Peters and C. Battista, “Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library,” Brain and Cognition, vol. 66, no. 3, pp. 260–264, 2008.
[25]  M. Peters, B. Laeng, K. Latham, and M. Jackson, “A redrawn vandenberg and kuse mental rotations test—different versions and factors that affect performance,” Brain and Cognition, vol. 28, no. 1, pp. 39–58, 1995.
[26]  M. Peters, J. T. Manning, and S. Reimers, “The effects of sex, sexual orientation, and digit ratio (2D?:?4D) on mental rotation performance,” Archives of Sexual Behavior, vol. 36, no. 2, pp. 251–260, 2007.
[27]  M. Kozhevnikov and M. Hegarty, “A dissociation between object manipulation spatial ability and spatial orientation ability,” Memory and Cognition, vol. 29, no. 5, pp. 745–756, 2001.
[28]  M. Hegarty and D. Waller, “A dissociation between mental rotation and perspective-taking spatial abilities,” Intelligence, vol. 32, no. 2, pp. 175–191, 2004.
[29]  A. N. Service, Smartphones for All “Makes Sense in Long Run”, U.S. Army News, 2011.
[30]  C. Heininger, Army Develops Smartphone Framework, Applications for the Front Lines, U.S. Army News, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413