全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heart Rate Responses to Synthesized Affective Spoken Words

DOI: 10.1155/2012/158487

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study investigated the effects of brief synthesized spoken words with emotional content on the ratings of emotions and heart rate responses. Twenty participants' heart rate functioning was measured while they listened to a set of emotionally negative, neutral, and positive words produced by speech synthesizers. At the end of the experiment, ratings of emotional experiences were also collected. The results showed that the ratings of the words were in accordance with their valence. Heart rate deceleration was significantly the strongest and most prolonged to the negative stimuli. The findings are the first suggesting that brief spoken emotionally toned words evoke a similar heart rate response pattern found earlier for more sustained emotional stimuli. 1. Introduction Verbal communication is unique to humans, and speech is an especially effective means to communicate ideas and emotions to other people [1]. McGregor [2] argued that spoken language is a more primary and more fundamental means of communication than written language. In speech, both verbal meaning and prosodic cues within the speech can communicate emotions; however, there is little research on the role of the verbal meaning of spoken words to human emotions. Although studies concerning the emotional processing of the verbal content of speech are rare, the scope of emotion studies has recently broadened from studying the reactions to the pictures of emotional scenes and human faces to visually presented linguistic stimuli. In a way, emotionally charged spoken stimuli uttered in a monotone or a neutral tone of voice partly parallels written text. By this, it is meant that only lexical contents of the stimuli offer knowledge about emotion, so the results about visually presented written words can provide some background references for studying reactions to spoken emotional words. Studies using event related potential (ERP) measurements have repeatedly found that early cortical responses to visually presented words with emotional content are enhanced as compared to ERPs to neutral words. This suggests that the emotional content of a word is identified at an early lexical stage of processing (e.g., [3–5]). In addition, there is evidence that written emotionally negative words evoke larger activation of corrugator supercilii (i.e., frowning) facial muscle than positive words do [6–8]. There are also studies that have found larger startle reflex to unpleasant words than to neutral and positive words during shallow word processing [9, 10]. Further, there is some evidence that written

References

[1]  G. A. de Laguna, Speech: Its Function and Development, Indiana University Press, Bloomington, Ind, USA, 1963.
[2]  W. McGregor, Linguistics: An Introduction, Continuum International, New York, NY, USA, 2009.
[3]  C. Herbert, M. Junghofer, and J. Kissler, “Event related potentials to emotional adjectives during reading,” Psychophysiology, vol. 45, no. 3, pp. 487–498, 2008.
[4]  J. Kissler, C. Herbert, P. Peyk, and M. Junghofer, “Buzzwords: early cortical responses to emotional words during reading: research report,” Psychological Science, vol. 18, no. 6, pp. 475–480, 2007.
[5]  G. G. Scott, P. J. O'Donnell, H. Leuthold, and S. C. Sereno, “Early emotion word processing: evidence from event-related potentials,” Biological Psychology, vol. 80, no. 1, pp. 95–104, 2009.
[6]  M. Bayer, W. Sommer, and A. Schacht, “Reading emotional words within sentences: the impact of arousal and valence on event-related potentials,” International Journal of Psychophysiology, vol. 78, no. 3, pp. 299–307, 2010.
[7]  F. Foroni and G. R. Semin, “Language that puts you in touch with your bodily feelings: the multimodal responsiveness of affective expressions,” Psychological Science, vol. 20, no. 8, pp. 974–980, 2009.
[8]  J. T. Larsen, C. J. Norris, and J. T. Cacioppo, “Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii,” Psychophysiology, vol. 40, no. 5, pp. 776–785, 2003.
[9]  C. Herbert, J. Kissler, M. Jungh?fer, P. Peyk, and B. Rockstroh, “Processing of emotional adjectives: evidence from startle EMG and ERPs,” Psychophysiology, vol. 43, no. 2, pp. 197–206, 2006.
[10]  C. Herbert and J. Kissler, “Motivational priming and processing interrupt: startle reflex modulation during shallow and deep processing of emotional words,” International Journal of Psychophysiology, vol. 76, no. 2, pp. 64–71, 2010.
[11]  T. W. Buchanan, J. A. Etzel, R. Adolphs, and D. Tranel, “The influence of autonomic arousal and semantic relatedness on memory for emotional words,” International Journal of Psychophysiology, vol. 61, no. 1, pp. 26–33, 2006.
[12]  M. Ilves and V. Surakka, “Emotions, anthropomorphism of speech synthesis, and psychophysiology,” in Emotions in the Human Voice, K. Izdebski, Ed., Culture and Perception, pp. 137–152, Plural, San Diego, Calif, USA, 2009.
[13]  M. M. Bradley, “Measuring emotion: the self-assessment manikin and the semantic differential,” Journal of Behavior Therapy and Experimental Psychiatry, vol. 25, no. 1, pp. 49–59, 1994.
[14]  P. J. Lang, M. M. Bradley, and B. N. Cuthbert, “Emotion, attention, and the startle reflex,” Psychological Review, vol. 97, no. 3, pp. 377–395, 1990.
[15]  M. M. Bradley and P. J. Lang, “Affective reactions to acoustic stimuli,” Psychophysiology, vol. 37, no. 2, pp. 204–215, 2000.
[16]  P. J. Lang, M. M. Bradley, and B. N. Cuthbert, “Motivated attention: affect, activation, and action,” in Attention and Orienting—Sensory and Motivational Processes, P. J. Lang, R. F. Simons, and M. T. Balaban, Eds., pp. 97–135, Erlbaum, Mahwah, NJ, USA, 1997.
[17]  M. Codispoti, M. M. Bradley, and P. J. Lang, “Affective reactions to briefly presented pictures,” Psychophysiology, vol. 38, no. 3, pp. 474–478, 2001.
[18]  W. Schneider, A. Eschman, and A. Zuccolotto, E-Prime User's Guide, Psychology Software Tools, Pittsburgh, Pa, USA, 2002.
[19]  J. Anttonen and V. Surakka, “Emotions and heart rate while sitting on a chair,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '05), pp. 491–499, April 2005.
[20]  J. Anttonen and V. Surakka, “Music, heart rate, and emotions in the context of stimulating technologies,” in Proceedings of the 2nd International Conference on Affective Computing and Intelligent Interaction (ACII '07), pp. 290–301.
[21]  J. Anttonen, V. Surakka, and M. Koivuluoma, “Ballistocardiographic responses to dynamic facial displays of emotion while sitting on the EMFi chair,” Journal of Media Psychology, vol. 21, no. 2, pp. 69–84, 2009.
[22]  M. M. Bradley and P. J. Lang, “Affective norms for English words (ANEW): stimuli, instruction manual and affective ratings,” Tech. Rep. C-1, University of Florida, Gainesville, Fla, USA, 1999.
[23]  T. Saarni, Segmental Durations of Speech [Doctoral Dissertation], University of Turku, Finland, 2010.
[24]  Suopuhe [speech synthesizer], http://www.ling.helsinki.fi/suopuhe/english.shtml.
[25]  Bitlips [speech synthesizer], http://www.bitlips.fi/index.en.html.
[26]  O. Pollatos, B. M. Herbert, E. Matthias, and R. Schandry, “Heart rate response after emotional picture presentation is modulated by interoceptive awareness,” International Journal of Psychophysiology, vol. 63, no. 1, pp. 117–124, 2007.
[27]  N. Cowan, “On short and long auditory stores,” Psychological Bulletin, vol. 96, no. 2, pp. 341–370, 1984.
[28]  N. Cowan, “Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system,” Psychological Bulletin, vol. 104, no. 2, pp. 163–191, 1988.
[29]  P. Bright, H. Moss, and L. K. Tyler, “Unitary vs multiple semantics: PET studies of word and picture processing,” Brain and Language, vol. 89, no. 3, pp. 417–432, 2004.
[30]  A. Schacht and W. Sommer, “Emotions in word and face processing: early and late cortical responses,” Brain and Cognition, vol. 69, no. 3, pp. 538–550, 2009.
[31]  A. Roelofs, “Dynamic of the attentional control of word retrieval: analyses of response time distributions,” Journal of Experimental Psychology, vol. 137, no. 2, pp. 303–323, 2008.
[32]  K. Rayner and C. Clifton, “Language processing in reading and speech perception is fast and incremental: Implications for event-related potential research,” Biological Psychology, vol. 80, no. 1, pp. 4–9, 2009.
[33]  M. Bayer, W. Sommer, and A. Schacht, “Emotional words impact the mind but not the body: evidence from pupillary responses,” Psychophysiology, vol. 48, no. 11, pp. 1553–1561, 2011.
[34]  B. Scharf, “Auditory attention: the psychoacoustical approach,” in Attention, H. Pashler, Ed., pp. 75–117, Psychology Press, Hove, UK, 1998.
[35]  M. Ilves and V. Surakka, “Subjective and physiological responses to emotional content of synthesized speech,” in Proceedings of the International Conference on Computer Animation and Social Agents (CASA '04), N. Magnenat-Thalmann, C. Joslin, and H. Kim, Eds., pp. 19–26, Computer Graphics Society, Geneva, Switzerland, 2004.
[36]  M. Ilves, V. Surakka, T. Vanhala, et al., “The effects of emotionally worded synthesized speech on the ratings of emotions and voice quality,” in Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction (ACII '11), Part I, S. D'Mello, et al., Ed., vol. 6974 of Lecture Notes in Computer Science, pp. 588–598, Springer, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413