全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Force Feedback to Assist Active Contour Modelling for Tracheal Stenosis Segmentation

DOI: 10.1155/2012/632498

Full-Text   Cite this paper   Add to My Lib

Abstract:

Manual segmentation of structures for diagnosis and treatment of various diseases is a very time-consuming procedure. Therefore, some level of automation during the segmentation is desired, as it often significantly reduces the segmentation time. A typical solution is to allow manual interaction to steer the segmentation process, which is known as semiautomatic segmentation. In 2D, such interaction is usually achieved with click-and-drag operations, but in 3D a more sophisticated interface is called for. In this paper, we propose a semi-automatic Active Contour Modelling for the delineation of medical structures in 3D, tomographic images. Interaction is implemented with the employment of a 3D haptic device, which is used to steer the contour deformation towards the correct boundaries. In this way, valuable haptic feedback is provided about the 3D surface and its deformation. Experiments on simulated and real tracheal CT data showed that the proposed technique is an intuitive and effective segmentation mechanism. 1. Introduction Image segmentation in the medical field is an important step for the diagnosis and treatment of various diseases. In many cases, this task is performed manually [1, 2]. However, manual segmentation is widely acknowledged as being time consuming and intra- and interoperator dependent. Hence, some level of automation during the segmentation is desired, as it often significantly reduces the segmentation time. Medical image segmentation, in particular, is a very complex task, given the necessary precision required for object extraction and boundary delineation. A typical solution is to allow users to provide extra knowledge to or interfere with the segmentation process in order to refine the results yielded by the automatic steps, which is known as semiautomatic (or interactive) segmentation. The Active Contour Model (ACM) [3] is a well-known shape deformation algorithm to delineate structures in images, and several semiautomatic versions of this algorithm have been proposed in the literature [4]. ACMs minimise an energy function that controls the bending and stretching of a given initial contour and the attraction by image features. The expected result is that the contour matches the boundary of the structure of interest in the image. In 2D, the interface between user and algorithm is usually established with click/drag processes. However, if the data being segmented is three-dimensional, such as in 3D Computed Tomography (CT) images, a more refined interface is called for. The present work sets forth a 3D segmentation interface for

References

[1]  G. Qiu and P. C. Yuen, “Interactive imaging and vision—ideas, algorithms and applications,” Pattern Recognition, vol. 43, no. 2, pp. 431–433, 2010.
[2]  S. D. Olabarriaga and A. W. M. Smeulders, “Interaction in the segmentation of medical images: a survey,” Medical Image Analysis, vol. 5, no. 2, pp. 127–142, 2001.
[3]  M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.
[4]  T. McInerney and D. Terzopoulos, “Deformable models in medical image analysis: a survey,” Medical Image Analysis, vol. 1, no. 2, pp. 91–108, 1996.
[5]  N. Spittle and A. McCluskey, “Lesson of the week: tracheal stenosis after intubation,” British Medical Journal, vol. 321, no. 7267, pp. 1000–1002, 2000.
[6]  P. M. Boiselle, J. Catena, A. Ernst, and D. A. Lynch, “Tracheobronchial stenoses,” in CT of the Airways, pp. 121–149, Humana Press-Springer, 2008.
[7]  R. Pinho, K. G. Tournoy, and J. Sijbers, “Assessment and stenting of tracheal stenosis using deformable shape models,” Medical Image Analysis, vol. 15, no. 2, pp. 250–266, 2011.
[8]  J. M. Triglia, B. Nazarian, I. Sudre-Levillain, S. Marciano, G. Moulin, and A. Giovanni, “Virtual laryngotracheal endoscopy based on geometric surface modeling using spiral computed tomography data,” Annals of Otology, Rhinology and Laryngology, vol. 111, no. 1, pp. 36–43, 2002.
[9]  Y. Kang, K. Engelke, and W. A. Kalender, “Interactive 3D editing tools for image segmentation,” Medical Image Analysis, vol. 8, no. 1, pp. 35–46, 2004.
[10]  K. McGuinness and N. E. O'Connor, “A comparative evaluation of interactive segmentation algorithms,” Pattern Recognition, vol. 43, no. 2, pp. 434–444, 2010.
[11]  F. Heckel, O. Konrad, H. Karl Hahn, and H.-O. Peitgen, “Interactive 3D medical image segmentation with energy-minimizing implicit functions,” Computers and Graphics, vol. 35, no. 2, pp. 275–287, 2011.
[12]  A. Bornik, R. Beichel, and D. Schmalstieg, “Interactive editing of segmented volumetric datasets in a hybrid 2D/3D virtual environment,” in Proceedings of the 13th ACM Symposium Virtual Reality Software and Technology (VRST '06), pp. 197–206, November 2006.
[13]  E. V. Zudilova-Seinstra, P. J. H. de Koning, A. Suinesiaputra et al., “Evaluation of 2D and 3D glove input applied to medical image analysis,” International Journal of Human Computer Studies, vol. 68, no. 6, pp. 355–369, 2010.
[14]  E. Vidholm, X. Tizon, I. Nystr?m, and E. Bengtsson, “Haptic guided seeding of mra images for semi-automatic segmentation,” in Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging, pp. 288–291, April 2004.
[15]  E. Vidholm, S. Nilsson, and I. Nystr?m, “Fast and robust semi-automatic liver segmentation with haptic interaction,” in Proceedings of the MICCAI, vol. 2, pp. 774–781, 2006.
[16]  F. Malmberg, E. Vidholm, and I. Nystr?m, “A 3D live-wire segmentation method for volume images using haptic interaction,” in Discrete Geometry for Computer Imagery, vol. 4245 of Lecture Notes in Computer Science, pp. 663–673, 2006.
[17]  E. Vidholm, M. Golubovic, S. Nilsson, and I. Nystr?m, “Accurate and reproducible semi-automatic liver segmentation using haptic interaction,” in Medical Imaging: Visualization, Image-Guided Procedures, and Modeling, vol. 6918 of Proceedings of SPIE, p. 69182Q, 2008.
[18]  M. Harders and G. Székely, “Improving medical segmentation with haptic interaction,” in Proceedings of the Virtual Reality, pp. 243–250, March 2002.
[19]  G. C. Burdea, Force and Touch Feedback for Virtual Reality, Wiley Interscience, 1996.
[20]  D. C. Ruspini, K. Kolarov, and O. Khatib, “The haptic display of complex graphical environments,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 345–352, 1997.
[21]  A. Kulik, J. Hochstrate, A. Kunert, and B Froehlich., “The influence of input device characteristics on spatial perception in desktop-based 3D applications,” in Proceedings of the Symposium on 3D User Interfaces, pp. 59–66, 2009.
[22]  L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
[23]  P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, Addison-Wesley, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413