|
对流换热耦合相变渗流问题的格子玻尔兹曼方法研究
|
Abstract:
相变是传质传热中的一种典型情况。而多孔介质中物质的相变在工业生产和日常生活中十分常见。由于相变问题的非线性特点,需要格子Boltzmann方法这种能够模拟流体运动以及为复杂物理现象建模的数值方法来处理它。本文运用格子Boltzmann方法对纯相变以及多孔介质内物质的对流相变过程进行了数值模拟,并对数值结果加以研究和讨论。发现不同的达西数对多孔介质内的对流相变过程中有重要的影响。
[1] | 刘伟,范爱武, 黄晓明. 多孔介质传热传质理论与应用[M].北京:科学出版社, 2006. |
[2] | 张鸿雁,张志政,王元。流体力学[M].北京:科学出版社,2004. |
[3] | Z. L. Guo, T. S. Zhao. Lattice Boltzmann model for incompres- sible flows through porous media. Physical Review E, 2002, 66(32): 36301-36304. |
[4] | W. S. Jiaung, J. R. Ho and C. P. Kuo. Lattice Boltzmann method for the heat conduction problem with phase change. Numerical Heat Transfer B, 2001, 39(2): 167-187. |
[5] | W. W. Yan, Y. Liu, Z. L. Guo and Y. S. Xu. Lattice Boltzmann simulation on natural convection heat transfer in a two-dimen-sional cavity filled with heterogeneously porous medium. International Journal of Modern Physics C,2006,17(6):771-783. |
[6] | C. Huber, A .Parmigiani, Chopard ,B,. M .Manga and O. Bachmann. Lattice Boltzmann model for melting with natural convection.International Journal of Heat and Fluid Flow,2008,29:1469-1480. |
[7] | U .Fricsh, D .d'Humieres, B .Hasslacher, P .Lallemand, et al. Lattice Gas Hydrodynamics in Two and Three Dimensions. Complex Systems, 1987, 1:649-707. |
[8] | U .Frisch, B .Hasslacher, and Y .Pomeau. Lattice-Gas Automata for Navier-Stokes Equations. Physics Review Letters,1986, 56(14):1505-1508. |