全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geomagnetic activity during the rising phase of solar cycle 24

DOI: 10.1051/swsc/2013031

Keywords: interplanetary coronal mass ejection (CME) , Solar cycle , stream , Solar activity , interplanetary medium

Full-Text   Cite this paper   Add to My Lib

Abstract:

As previous studies have shown, geomagnetic activity during the solar minimum following solar cycle 23 was at low levels unprecedented during the space era, and even since the beginning of the Kp index in 1932. Here, we summarize the characteristics of geomagnetic activity during the first 4 years of cycle 24 following smoothed sunspot minimum in December, 2008, and compare these with those of similar periods during earlier cycles going back to the start of Kp (cycles 17–23). The most outstanding feature is the continuing low levels of geomagnetic activity that are well below those observed during the rising phases of the other cycles studied. Even 4 years into cycle 24, geomagnetic storm rates are still only comparable to or below the rates observed during activity minima in previous cycles. We note that the storm rate during the rising phases of cycles 17–23 was correlated with the peak sunspot number (SSN) in the cycle. Extrapolating these results to the low storm rates in cycle 24 suggests values of the peak SSN in cycle 24 that are consistent with the NOAA Space Weather Prediction Center prediction of 90 ± 10, indicating that cycle 24 is likely to be the weakest cycle since at least 1932. No severe (Dst < 200 nT) storms have been observed during the first 4 years of cycle 24 compared with 4 in the comparable interval of cycle 23, and only 10 intense (Dst < 100 nT) storms, compared with 21 in cycle 23. These storms were all associated with the passage of Interplanetary Coronal Mass Ejections (ICMEs) and/or their associated sheaths. The lack of strong southward magnetic fields in ICMEs and their sheaths, their lower speeds close to the average solar wind speed, a ~20% reduction in the number of ICMEs passing the Earth, and weaker than normal fields in corotating high-speed streams, contribute to the low levels of geomagnetic storm activity in the rise phase of cycle 24. However, the observation of an ICME with strong southward fields at the STEREO A spacecraft on July 24, 2012, which would have been highly geoeffective had it encountered the Earth, demonstrates that strong geomagnetic storms may still occur during weak solar cycles.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133