全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The use of non-viral gene vectors for bioactive poly-(D,L-lactide) implant surfaces in bone tissue engineering

Keywords: Non-viral gene therapy , controlled drug release , nanobiotechnology , bone regeneration , bioactive surface , implant integrity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The application of scaffolds in bone tissue engineering often comes along with side effects such as poor integrity, low regeneration rates of bone tissue with inadequate functionality, and, in case of non-degradable implants, the necessity of a second removal surgery after therapy. In this study, we coated a bioresorbable FDA-approved poly-(ε-caprolactone)-scaffold for bone regeneration with a poly-(D,L-lactide) layer containing copolymer-protected gene vectors to locally provide bone morphogenetic protein-2 (BMP-2). Results show that the presence of such gene vectors did not affect the distribution and attachment of seeded cells on gene-activated surfaces. BMP-2 was released into cell culture supernatants and furthermore detected in homogenised scaffolds. Increased amounts of osteoblastic markers, such as osteocalcin, osteopontin and the activity of alkaline phosphatase, in gene-activated scaffolds in vitro suggest a transdifferentiation of myoblastic C2C12 cells into the osteoblastic phenotype. With this study we present a new technology to bioactivate implant surfaces with non-viral gene vectors. This tool allows the stimulation of tissue regeneration by a local release of therapeutic proteins in vivo.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413