全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Against Lung Cancer Cells: To Be, or Not to Be, That Is the Problem

DOI: 10.1155/2012/659365

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tobacco smoke and radioactive radon gas impose a high risk for lung cancer. The radon-derived ionizing radiation and some components of cigarette smoke induce oxidative stress by generating reactive oxygen species (ROS). Respiratory lung cells are subject to the ROS that causes DNA breaks, which subsequently bring about DNA mutagenesis and are intimately linked with carcinogenesis. The damaged cells by oxidative stress are often destroyed through the active apoptotic pathway. However, the ROS also perform critical signaling functions in stress responses, cell survival, and cell proliferation. Some molecules enhance radiation-induced tumor cell killing via the reduction in DNA repair levels. Hence the DNA repair levels may be a novel therapeutic modality in overcoming drug resistance in lung cancer. Either survival or apoptosis, which is determined by the balance between DNA damage and DNA repair levels, may lender the major problems in cancer therapy. The purpose of this paper is to take a closer look at risk factor and at therapy modulation factor in lung cancer relevant to the ROS. 1. Introduction Lung cancer is the commonest fatal cancer whose risk is dependent on the number of cigarettes smoked per day as well as the duration years of the smoking [1, 2]. Passive smoking also damages health [3]. Cigarette smoke is a complex mixture of more than 5000 chemicals that have been identified in the smoke. Among them, more than 50 are known to cause cancer in humans. A wide variety of the other toxic substances such as asbestos, polycyclic aromatic carbohydrates, arsenic, and diesel emissions also have been identified as potential causes of lung cancer [4, 5]. Some of these carcinogens react covalently with DNA to cause oxidative damage, which can induce DNA breaks [6]. Another recognized lung carcinogen is the chemically nearly inert gas radon [7], a ubiquitous natural air pollutant arising from radioactive decay of the uranium-238, which is present throughout the earth crust. Radon is a naturally occurring radioactive gas with the atomic number 86. It is odorless and colorless. Both radon-induced ionizing radiation and some components of cigarette smoke induce oxidative stress by transmitting or generating reactive oxygen species (ROS). The chronic exposure to ROS contributes to a variety of processes, including aging, degenerative diseases, and cancer [8]. ROS also appear to play an essential role as secondary messengers in the normal regulation of a variety of physiological processes, such as apoptosis, survival, and proliferative signaling pathways [9,

References

[1]  K. Frost-pineda, Q. Liang, J. Liu et al., “Biomarkers of potential harm among adult smokers and nonsmokers in the total exposure study,” Nicotine and Tobacco Research, vol. 13, no. 3, pp. 182–193, 2011.
[2]  J. H. Lubin and N. E. Caporaso, “Cigarette smoking and lung cancer: modeling total exposure and intensity,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 3, pp. 517–523, 2006.
[3]  J. Britton, “Passive smoking damages children's health,” Practitioner, vol. 254, no. 1729, pp. 27–30, 2010.
[4]  I. Brüske-Hohlfeld, “Environmental and occupational risk factors for lung cancer,” Methods in Molecular Biology, vol. 472, pp. 3–23, 2009.
[5]  B. Hoffmann and K. H. J?ckel, “Diesel exhaust and coal mine dust: lung cancer risk in occupational settings,” Annals of the New York Academy of Sciences, vol. 1076, pp. 253–265, 2006.
[6]  S. S. Wise, A. L. Holmes, and J. P. Wise Sr., “Hexavalent chromium-induced DNA damage and repair mechanisms,” Reviews on Environmental Health, vol. 23, no. 1, pp. 39–57, 2008.
[7]  J. Subramanian and R. Govindan, “Lung cancer in never smokers: a review,” Journal of Clinical Oncology, vol. 25, no. 5, pp. 561–570, 2007.
[8]  L. Behrend, G. Henderson, and R. M. Zwacka, “Reactive oxygen species in oncogenic transformation,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1441–1444, 2003.
[9]  D. R. Bickers and M. Athar, “Oxidative stress in the pathogenesis of skin disease,” Journal of Investigative Dermatology, vol. 126, no. 12, pp. 2565–2575, 2006.
[10]  S. C. Sikka, “Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach,” Current Medicinal Chemistry, vol. 10, no. 24, pp. 2679–2692, 2003.
[11]  Z. Liu, H. Lin, S. Ye et al., “Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 8965–8970, 2006.
[12]  S. Miriyala, A. K. Holley, and D. K. St Clair, “Mitochondrial superoxide dismutases-signals of distinction,” Anti-Cancer Agents in Medicinal Chemistry, vol. 11, no. 2, pp. 181–190, 2011.
[13]  V. G. Gorgoulis, L. V. F. Vassiliou, P. Karakaidos et al., “Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions,” Nature, vol. 434, no. 7035, pp. 907–913, 2005.
[14]  A. A. Sablina, A. V. Budanov, G. V. Ilyinskaya, L. S. Agapova, J. E. Kravchenko, and P. M. Chumakov, “The antioxidant function of the p53 tumor suppressor,” Nature Medicine, vol. 11, no. 12, pp. 1306–1313, 2005.
[15]  J. Chow and R. Y. Poon, “DNA damage and polyploidization,” Advances in Experimental Medicine and Biology, vol. 676, pp. 57–71, 2010.
[16]  Y. L. Lo, C. F. Hsiao, Y. S. Jou et al., “ATM polymorphisms and risk of lung cancer among never smokers,” Lung Cancer, vol. 69, no. 2, pp. 148–154, 2010.
[17]  C. A. Neumann, D. S. Krause, C. V. Carman et al., “Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression,” Nature, vol. 424, no. 6948, pp. 561–565, 2003.
[18]  T. Goldkorn and S. Filosto, “Lung injury and cancer: mechanistic insights into ceramide and EGFR signaling under cigarette smoke,” American Journal of Respiratory Cell and Molecular Biology, vol. 43, no. 3, pp. 259–268, 2010.
[19]  R. Doll, “Cancers weakly related to smoking,” British Medical Bulletin, vol. 52, no. 1, pp. 35–49, 1996.
[20]  D. L. Barbato, G. Tomei, F. Tomei, and A. Sancini, “Traffic air pollution and oxidatively generated DNA damage: can urinary 8-oxo-7,8-dihydro-2-deoxiguanosine be considered a good biomarker A meta-analysis,” Biomarkers, vol. 15, no. 6, pp. 538–545, 2010.
[21]  A. Tarantini, A. Maitre, E. Lefebvre et al., “Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures,” Mutation Research, vol. 671, no. 1-2, pp. 67–75, 2009.
[22]  R. A. El-Zein, C. M. Monroy, A. Cortes, M. R. Spitz, A. Greisinger, and C. J. Etzel, “Rapid method for determination of DNA repair capacity in human peripheral blood lymphocytes amongst smokers,” BMC Cancer, vol. 10, article 439, 2010.
[23]  L. A. Truta-Popa, W. Hofmann, and C. Cosma, “Prediction of lung cancer risk for radon exposures based on cellular alpha particle hits,” Radiation Protection Dosimetry, vol. 145, no. 2-3, pp. 218–223, 2011.
[24]  S. Darby, D. Hill, A. Auvinen et al., “Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies,” British Medical Journal, vol. 330, no. 7485, pp. 223–229, 2005.
[25]  M. Al-Zoughool and D. Krewski, “Health effects of radon: a review of the literature,” International Journal of Radiation Biology, vol. 85, no. 1, pp. 57–69, 2009.
[26]  F. A. Cucinotta and L. J. Chappell, “Updates to astronaut radiation limits: radiation risks for never-smokers,” Radiation Research, vol. 176, no. 1, pp. 102–114, 2011.
[27]  M. Blettner, H. Zeeb, I. Langner, G. P. Hammer, and T. Schafft, “Mortality from cancer and other causes among airline cabin attendants in Germany, 1960–1997,” American Journal of Epidemiology, vol. 156, no. 6, pp. 556–565, 2002.
[28]  U. Camenisch and H. Naegeli, “Role of DNA repair in the protection against genotoxic stress,” EXS, vol. 99, pp. 111–150, 2009.
[29]  K. K. Khanna and S. P. Jackson, “DNA double-strand breaks: signaling, repair and the cancer connection,” Nature Genetics, vol. 27, no. 3, pp. 247–254, 2001.
[30]  H. Shen, M. R. Spitz, Y. Qiao et al., “Smoking, DNA repair capacity and risk of nonsmall cell lung cancer,” International Journal of Cancer, vol. 107, no. 1, pp. 84–88, 2003.
[31]  R. J. Hung, P. Brennan, F. Canzian et al., “Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study,” Journal of the National Cancer Institute, vol. 97, no. 8, pp. 567–576, 2005.
[32]  R. R. Misra, D. Ratnasinghe, J. A. Tangrea et al., “Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland,” Cancer Letters, vol. 191, no. 2, pp. 171–178, 2003.
[33]  M. Babaei, M. Mitui, E. R. Olson, and R. A. Gatti, “ATM haplotypes and associated mutations in Iranian patients with ataxia-telangiectasia: recurring homozygosity without a founder haplotype,” Human Genetics, vol. 117, no. 2-3, pp. 101–106, 2005.
[34]  R. Kitagawa and M. B. Kastan, “The ATM-dependent DNA damage signaling pathway,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 99–109, 2005.
[35]  J. Zhou, C. U. Lim, J. J. Li, L. Cai, and Y. Zhang, “The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage,” Cancer Letters, vol. 243, no. 1, pp. 9–15, 2006.
[36]  Y. R. Lou, Y. P. Lu, J. G. Xie, M. T. Huang, and A. H. Conney, “Effects of oral administration of tea, decaffeinated tea, and caffeine on the formation and growth of tumors in high-risk SKH-1 mice previously treated with ultraviolet B light,” Nutrition and Cancer, vol. 33, no. 2, pp. 146–153, 1999.
[37]  S. Matsuda, S. Yokozaki, H. Yoshida, Y. Kitagishi, N. Shirafuji, and N. Okumura, “Insulin receptor substrate protein 53 (IRSp53) as a binding partner of antimetastasis molecule NESH, a member of Abelson interactor protein family,” Annals of Oncology, vol. 19, no. 7, pp. 1356–1357, 2008.
[38]  S. Matsuda, Y. Ichigotani, N. Okumura et al., “NESH protein expression switches to the adverse effect of imatinib mesylate,” Molecular Oncology, vol. 2, no. 1, pp. 16–19, 2008.
[39]  J. Smith, L. Mun Tho, N. Xu, and D. A. Gillespie, “The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer,” Advances in Cancer Research, vol. 108, no. C, pp. 73–112, 2010.
[40]  T. Walsh and M. C. King, “Ten genes for inherited breast cancer,” Cancer Cell, vol. 11, no. 2, pp. 103–105, 2007.
[41]  T. Saha, J. K. Rih, R. Roy, R. Ballal, and E. M. Rosen, “Transcriptional regulation of the base excision repair pathway by BRCA1,” Journal of Biological Chemistry, vol. 285, no. 25, pp. 19092–19105, 2010.
[42]  T. Saha, J. K. Rih, and E. M. Rosen, “BRCA1 down-regulates cellular levels of reactive oxygen species,” FEBS Letters, vol. 583, no. 9, pp. 1535–1543, 2009.
[43]  J. T. P. Yeeles and M. S. Dillingham, “The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes,” DNA Repair, vol. 9, no. 3, pp. 276–285, 2010.
[44]  H. Shimizu, M. Popova, F. Fleury et al., “c-ABL tyrosine kinase stabilizes RAD51 chromatin association,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 286–291, 2009.
[45]  K. M. Garner and A. Eastman, “Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced S-phase arrest in the cell lines of the NCI60 panel,” BMC Cancer, vol. 11, pp. 1–13, 2011.
[46]  V. Dumon-Jones, P. O. Frappart, W. M. Tong et al., “Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis,” Cancer Research, vol. 63, no. 21, pp. 7263–7269, 2003.
[47]  G. Jayachandran, K. Ueda, B. Wang, J. A. Roth, and L. Ji, “NPRL2 sensitizes human non-small cell lung cancer (NSCLC) cells to cisplatin treatment by regulating key components in the DNA repair pathway,” PLoS ONE, vol. 5, no. 8, Article ID e11994, 2010.
[48]  I. Boukovinas, C. Papadaki, P. Mendez et al., “Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients,” PLoS ONE, vol. 3, no. 11, Article ID e3695, 2008.
[49]  R. Rosell, L. Perez-Roca, J. J. Sanchez et al., “Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression,” PloS one, vol. 4, no. 5, Article ID e5133, 2009.
[50]  E. Raderschall, K. Stout, S. Freier, V. Suckow, S. Schweiger, and T. Haaf, “Elevated levels of Rad51 recombination protein in tumor cells,” Cancer Research, vol. 62, no. 1, pp. 219–225, 2002.
[51]  A. Slupianek, C. Schmutte, G. Tombline et al., “BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance,” Molecular Cell, vol. 8, no. 4, pp. 795–806, 2001.
[52]  J. C. Ko, J. H. Hong, L. H. Wang et al., “Role of repair protein Rad51 in regulating the response to gefitinib in human non-small cell lung cancer cells,” Molecular Cancer Therapeutics, vol. 7, no. 11, pp. 3632–3641, 2008.
[53]  J. C. Ko, S. C. Ciou, J. Y. Jhan et al., “Roles of MKK1/2-ERK1/2 and phosphoinositide 3-kinase-AKT signaling pathways in erlotinib-induced Rad51 suppression and cytotoxicity in human non-small cell lung cancer cells,” Molecular Cancer Research, vol. 7, no. 8, pp. 1378–1389, 2009.
[54]  J. S. Russell, K. Brady, W. E. Burgan et al., “Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity,” Cancer Research, vol. 63, no. 21, pp. 7377–7383, 2003.
[55]  L. T. Hansen, C. Lundin, M. Spang-Thomsen, L. N. Petersen, and T. Helleday, “The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer,” International Journal of Cancer, vol. 105, no. 4, pp. 472–479, 2003.
[56]  Y. J. Su, M. S. Tsai, Y. H. Kuo et al., “Role of Rad51 down-regulation and extracellular signal-regulated kinases 1 and 2 inactivation in emodin and mitomycin C-induced synergistic cytotoxicity in human non-small-cell lung cancer cells,” Molecular Pharmacology, vol. 77, no. 4, pp. 633–643, 2010.
[57]  J. C. Eun, A. P. Brown, H. Asano et al., “In vitro and in vivo radiosensitizationwith AZD6244 (ARRY-142886), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinase,” Clinical Cancer Research, vol. 15, no. 9, pp. 3050–3057, 2009.
[58]  W. Zhang, A. N. Hanks, K. Boucher et al., “UVB-induced apoptosis drives clonal expansion during skin tumor development,” Carcinogenesis, vol. 26, no. 1, pp. 249–257, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413