全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mycophenolic Acid Overcomes Imatinib and Nilotinib Resistance of Chronic Myeloid Leukemia Cells by Apoptosis or a Senescent-Like Cell Cycle Arrest

DOI: 10.1155/2012/861301

Full-Text   Cite this paper   Add to My Lib

Abstract:

We used K562 cells sensitive or generated resistant to imatinib or nilotinib to investigate their response to mycophenolic acid (MPA). MPA induced DNA damage leading to cell death with a minor contribution of apoptosis, as revealed by annexin V labeling (up to 25%). In contrast, cell cycle arrest and positive staining for senescence-associated β-galactosidase activity were detected for a large cell population (80%). MPA-induced cell death was potentialized by the inhibition of autophagy and this is associated to the upregulation of apoptosis. In contrast, senescence was neither decreased nor abrogated in autophagy deficient K562 cells. Primary CD34 cells from CML patients sensitive or resistant to imatinib or nilotinib respond to MPA although apoptosis is mainly detected. These results show that MPA is an interesting tool to overcome resistance in vitro and in vivo mainly in the evolved phase of the disease. 1. Introduction Chronic myeloid leukaemia (CML) is a myeloproliferative disorder characterized by a reciprocal translocation leading to the Philadelphia chromosome (Ph+) with a fusion gene BCR-ABL, the molecular hallmark of CML and Ph-positive acute lymphoblastic leukaemia (LAL) [1–3]. The resulting chimeric protein contains the kinase domain of the tyrosine kinase Abl N-terminal fused to a portion of Bcr including its dimerization domain [1]. The constitutive dimerization of Bcr-Abl results in the deregulated activation of the tyrosine-kinase driving uncontrolled proliferation and suppression of apoptosis in the affected hematopoietic cells. This pathophysiology explains the remarkable efficacy of Abl tyrosine kinase inhibitors (TKI) in controlling CML. Indeed, when exposed to TKI, Bcr-Abl expressing cells undergo apoptosis [4]. Although TKIs have represented a tremendous progress in the management of CML patients, resistances to TKI treatment have emerged. About a third of these resistances can be explained by the acquisition of additional mutations in the kinase domain of Abl. These mutations typically impede the inhibitor binding to its target, and second- generation inhibitors have been designed to overcome these resistances whenever possible. In the remaining resistant patients, the mechanisms are certainly more varied and often remain elusive. In an attempt to characterize and so to overcome resistance to TKI, we have generated K562-derived cell lines resistant to imatinib or nilotinib [5, 6]. We and other have shown that amplification of Bcr-Abl, overexpression of stress proteins, or deregulation of Src kinases are among the mechanisms

References

[1]  J. D. Rowley and J. R. Testa, “Chromosome abnormalities in malignant hematologic diseases,” Advances in Cancer Research, vol. 36, no. C, pp. 103–148, 1982.
[2]  J. Groffen, N. Heisterkamp, and K. Stam, “Oncogene activation by chromosomal translocation in chronic myelocytic leukemia,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 51, no. 2, pp. 911–921, 1986.
[3]  J. V. Melo, “The molecular biology of chronic myeloid leukaemia,” Leukemia, vol. 10, no. 5, pp. 751–756, 1996.
[4]  B. J. Druker, S. Tamura, E. Buchdunger et al., “Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells,” Nature Medicine, vol. 2, no. 5, pp. 561–566, 1996.
[5]  F. X. Mahon, M. W. N. Deininger, B. Schultheis et al., “Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance,” Blood, vol. 96, no. 3, pp. 1070–1079, 2000.
[6]  F. X. Mahon, S. Hayette, V. Lagarde et al., “Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression,” Cancer Research, vol. 68, no. 23, pp. 9809–9816, 2008.
[7]  N. J. Donato, J. Y. Wu, J. Stapley et al., “BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571,” Blood, vol. 101, no. 2, pp. 690–698, 2003.
[8]  S. Ray, Y. Lu, S. H. Kaufmann et al., “Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis,” Journal of Biological Chemistry, vol. 279, no. 34, pp. 35604–35615, 2004.
[9]  M. Pocaly, V. Lagarde, G. Etienne et al., “Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia,” Leukemia, vol. 21, no. 1, pp. 93–101, 2007.
[10]  G. Guidicelli, B. Chaigne-Delalande, M. S. Dilhuydy et al., “The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells,” PLoS One, vol. 4, no. 5, Article ID e5493, 2009.
[11]  J. Huo, R. H. Luo, S. A. Metz, and G. Li, “Activation of caspase-2 mediates the apoptosis induced by GTP-depletion in insulin-secreting (HIT-T15) cells,” Endocrinology, vol. 143, no. 5, pp. 1695–1704, 2002.
[12]  D. Floryk and E. Huberman, “Mycophenolic acid-induced replication arrest, differentiation markers and cell death of androgen-independent prostate cancer cells DU145,” Cancer Letters, vol. 231, no. 1, pp. 20–29, 2006.
[13]  J. J. Gu, L. Santiago, and B. S. Mitchell, “Synergy between imatinib and mycophenolic acid in inducing apoptosis in cell lines expressing Bcr-Abl,” Blood, vol. 105, no. 8, pp. 3270–3277, 2005.
[14]  S. Pe?uelas, V. Noé, R. Morales, and C. J. Ciudad, “Sensitization of human erythroleukemia K562 cells resistant to methotrexate by inhibiting IMPDH,” Medical Science Monitor, vol. 11, no. 1, pp. BR6–BR12, 2005.
[15]  B. Chaigne-Delalande, G. Guidicelli, L. Couzi, and P. Legembre, “An atypical necrotic signal induced by immunosuppressive and anti-viral agents,” Autophagy, vol. 5, no. 3, pp. 425–427, 2009.
[16]  M. Nagai, Y. Natsumeda, Y. Konno, R. Hoffman, S. Irino, and G. Weber, “Selective up-regulation of type II inosine 5'-monophosphate dehydrogenase messenger RNA expression in human leukemias,” Cancer Research, vol. 51, no. 15, pp. 3886–3890, 1991.
[17]  M. Pocaly, V. Lagarde, G. Etienne et al., “Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance,” Proteomics, vol. 8, no. 12, pp. 2394–2406, 2008.
[18]  M. Priault, E. Hue, F. Marhuenda, P. Pilet, L. Oliver, and F. M. Vallette, “Differential dependence on Beclin 1 for the regulation of pro-survival autophagy by Bcl-2 and Bcl-xL in HCT116 colorectal cancer cells,” PLoS One, vol. 5, no. 1, Article ID e8755, 2010.
[19]  X. F. Qin, D. S. An, I. S. Y. Chen, and D. Baltimore, “Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 183–188, 2003.
[20]  R. Gioia, C. Leroy, C. Drullion et al., “Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells,” Blood, vol. 118, no. 8, pp. 2211–2221, 2011.
[21]  G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9363–9367, 1995.
[22]  A. Hochhaus, S. Kreil, A. Corbin et al., “Roots of clinical resistance to STI-571 cancer therapy,” Science, vol. 293, no. 5538, p. 2163, 2001.
[23]  S. M. Graham, H. G. J?rgensen, E. Allan et al., “Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro,” Blood, vol. 99, no. 1, pp. 319–325, 2002.
[24]  A. Hochhaus and P. La Rosée, “Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance,” Leukemia, vol. 18, no. 8, pp. 1321–1331, 2004.
[25]  M. W. N. Deininger and B. J. Druker, “SRCircumventing imatinib resistance,” Cancer Cell, vol. 6, no. 2, pp. 108–110, 2004.
[26]  M. A. Moosavi, R. Yazdanparast, and A. Lotfi, “GTP induces S-phase cell-cycle arrest and inhibits DNA synthesis in K562 cells but not in normal human peripheral lymphocytes,” Journal of Biochemistry and Molecular Biology, vol. 39, no. 5, pp. 492–501, 2006.
[27]  S. Seoane, J. C. Montero, A. Oca?a, and A. Pandiella, “Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells,” Journal of the National Cancer Institute, vol. 102, no. 18, pp. 1432–1446, 2010.
[28]  M. Okada, S. Adachi, T. Imai et al., “A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity,” Blood, vol. 103, no. 6, pp. 2299–2307, 2004.
[29]  C. Michaloglou, L. C. W. Vredeveld, M. S. Soengas et al., “BRAFE600-associated senescence-like cell cycle arrest of human naevi,” Nature, vol. 436, no. 7051, pp. 720–724, 2005.
[30]  J. L. Oliva, M. C. Caino, A. M. Senderowicz, and M. G. Kazanietz, “S-phase-specific activation of PKCα induces senescence in non-small cell lung cancer cells,” Journal of Biological Chemistry, vol. 283, no. 9, pp. 5466–5476, 2008.
[31]  P. Boya, R. A. González-Polo, N. Casares et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, no. 3, pp. 1025–1040, 2005.
[32]  Y. Mishima, Y. Terui, Y. Mishima et al., “Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors,” Cancer Science, vol. 99, no. 11, pp. 2200–2208, 2008.
[33]  C. Bellodi, M. R. Lidonnici, A. Hamilton et al., “Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1109–1123, 2009.
[34]  A. R. J. Young, M. Narita, M. Ferreira et al., “Autophagy mediates the mitotic senescence transition,” Genes and Development, vol. 23, no. 7, pp. 798–803, 2009.
[35]  F. Scarlatti, R. Maffei, I. Beau, R. Ghidoni, and P. Codogno, “Non-canonical autophagy: an exception or an underestimated form of autophagy?” Autophagy, vol. 4, no. 8, pp. 1083–1085, 2008.
[36]  A. Puissant, G. Robert, N. Fenouille et al., “Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation,” Cancer Research, vol. 70, no. 3, pp. 1042–1052, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413