全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Oscillatory Brain Networks after Lexical Tone Training

DOI: 10.3390/brainsci3020757

Keywords: gamma, alpha, phase synchrony, speech perception, learning, lexical tones

Full-Text   Cite this paper   Add to My Lib

Abstract:

Learning foreign speech contrasts involves creating new representations of sound categories in memory. This formation of new memory representations is likely to involve changes in neural networks as reflected by oscillatory brain activity. To explore this, we conducted time-frequency analyses of electro-encephalography (EEG) data recorded in a passive auditory oddball paradigm using Thai language tones. We compared native speakers of English (a non-tone language) and native speakers of Mandarin Chinese (a tone language), before and after a two-day laboratory training. Native English speakers showed a larger gamma-band power and stronger alpha-band synchrony across EEG channels than the native Chinese speakers, especially after training. This is compatible with the view that forming new speech categories on the basis of unfamiliar perceptual dimensions involves stronger gamma activity and more coherent activity in alpha-band networks than forming new categories on the basis of familiar dimensions.

References

[1]  Best, C.T.; Tyler, M.D. Nonnative and Second-Language Speech Perception: Commonalities and Complementarities. In Language Experience in Second Language Speech Learning: In Honor of James Emil Flege; Bohn, O.-S., Munro, M., Eds.; John Benjamins: Amsterdam, The Netherlands, 2007; pp. 13–34.
[2]  Kuhl, P.K. Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 2004, 5, 831–843.
[3]  Flege, J.E. Second Language Speech Learning: Theory, Findings, and Problems. In Speech Perception and Linguistic Experience: Issues in Cross-Language Research; Strange, W., Ed.; York Press: Timonium, MD, USA, 1995; pp. 233–277.
[4]  Strange, W.; Shafer, V. Speech Perception in Second Language Learners. The Re-Education of Selective Perception. In Phonology and Second Language Acquisition; Hansen Edwards, J.G., Zampini, M.L., Eds.; John Benjamins: Amsterdam, The Netherlands, 2008; pp. 153–191.
[5]  Burnham, D.; Mattock, K. The Perception of Tones and Phones. In Language Experience in Second Language Speech Learning: In Honor of James Emil Flege; Bohn, O.-S., Munro, M., Eds.; John Benjamins: Amsterdam, The Netherlands, 2007; pp. 259–280.
[6]  Bluhme, H.; Burr, R. An audio-visual display of pitch for teaching Chinese tones. Stud. Linguist. 1971, 22, 51–57.
[7]  Kuriloff, C. On the auditory discrimination of tones in Mandarin. Phonetica 1969, 20, 63–69.
[8]  Wang, Y.; Spence, M.M.; Jongman, A.; Sereno, J.A. Training American listeners to perceive Mandarin tone. J. Acoust. Soc. Am. 1999, 106, 3649–3658.
[9]  Wayland, R.; Guion, S. Training native English and native Chinese speakers to perceive Thai tones. Lang. Learn. 2004, 54, 681–712.
[10]  Wayland, R.; Li, B. Effects of two training procedures in cross-language perception of tones. J. Phon. 2008, 36, 250–267.
[11]  Krishnan, A.; Xu, Y.; Gandour, J.; Cariani, P. Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res. Cogn. Brain Res. 2005, 25, 161–168.
[12]  Kaan, E.; Barkley, C.; Bao, M.; Wayland, R. Thai lexical tone perception in native speakers of Thai, English and Mandarin Chinese: An event-related potentials training study. BMC Neurosci. 2008, 9, 53.
[13]  So, C.K.; Best, C.T. Cross-language perception of non-native tonal contrasts: Effects of native phonological and phonetic influences. Lang. Speech 2010, 53, 273–293.
[14]  Chandrasekaran, B.; Gandour, J.; Krishnan, A. Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restor. Neurol. Neurosci. 2007, 25, 95–210.
[15]  Gandour, J. Tone perception in Far Eastern languages. J. Phon. 1983, 11, 49–175.
[16]  Gandour, J.; Harshman, R. Cross-language difference in tone perception: A multidimensional scaling investigation. Lang. Speech 1978, 21, 1–33.
[17]  Krishnan, A.; Gandour, J.; Bidelman, G.M.; Swaminathan, J. Experience-dependent neural representation of dynamic pitch in the brainstem. Neuroreport 2009, 20, 408–413.
[18]  Guion, S.G.; Pederson, E. Investigating the Role of Attention in Phonetic Learning. In Language Experience in Second Language Speech Learning: In Honor of James Emil Flege; Bohn, O.-S., Munro, M., Eds.; John Benjamins: Amsterdam, The Netherlands, 2007; pp. 57–76.
[19]  Wayland, R.; Herrera, E.; Kaan, E. Effects of musical experience and training on pitch contour perception. J. Phon. 2010, 38, 654–662.
[20]  Wong, P.C.M.; Perrachione, T.K. Learning pitch patterns in lexical identification by native English-speaking adults. Appl. Psycholinguist. 2007, 28, 565–585.
[21]  Wang, Y.; Sereno, J.A.; Jongman, A.; Hirsch, J. fMRI evidence for cortical modification during learning of Mandarin lexical tone. J. Cogn. Neurosci. 2003, 15, 1019–1027.
[22]  Wong, P.C.M.; Perrachione, T.K.; Parrish, T.B. Neural characteristics of successful and less successful speech and word learning in adults. Hum. Brain Mapp. 2007, 28, 995–1006.
[23]  Kaan, E.; Wayland, R.; Bao, M.; Barkley, C. Effects of native language and training on lexical tone perception: An ERP study. Brain Res. 2007, 1148, 113–122.
[24]  Menning, H.; Imaizumi, S.; Zwitserlood, P.; Pantev, C. Plasticity of the human auditory cortex induced by discrimination learning of non-native, mora-timed contrasts of the Japanese language. Learn. Mem. 2002, 9, 253–267.
[25]  Tremblay, K.; Kraus, N. Auditory training induced asymmetrical changes in cortical neural activity. J. Speech Lang. Hear. Res. 2002, 45, 564–572.
[26]  Tremblay, K.; Kraus, N.; McGee, T.; Ponton, C.W.; Otis, B. Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear Hear. 2001, 22, 79–90.
[27]  Zhang, Y.; Kuhl, P.K.; Imada, T.; Iverson, P.; Pruitt, J.; Stevens, E.B.; Kawakatsu, M.; Tohkura, Y.I.; Nemoto, I. Neural signatures of phonetic learning in adulthood: A magnetoencephalography study. Neuroimage 2009, 46, 226–240.
[28]  Singer, W.; Gray, C.M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 1995, 18, 555–586.
[29]  Fries, P.; Reynolds, J.H.; Rorie, A.E.; Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 2001, 291, 1560–1563.
[30]  Snyder, J.S.; Large, E.W. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res. 2005, 24, 117–126.
[31]  Sokolov, A.; Pavlova, M.; Lutzenberger, W.; Birbaumer, N. Reciprocal modulation of neuromagnetic induced gamma activity by attention in the human visual and auditory cortex. Neuroimage 2004, 22, 521–529.
[32]  Tallon-Baudry, C.; Bertrand, O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 1999, 3, 151–162.
[33]  Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental calculation. Cereb. Cortex 2001, 11, 350–359.
[34]  Sederberg, P.B.; Kahana, M.J.; Howard, M.W.; Donner, E.J.; Madsen, J.R. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 2003, 23, 10809–10814.
[35]  Lutzenberger, W.; Ripper, B.; Busse, L.; Birbaumer, N.; Kaiser, J. Dynamics of gamma-band activity during an audiospatial working memory task in humans. J. Neurosci. 2002, 22, 5630–5638.
[36]  Herrmann, C.S.; Lenz, D.; Junge, S.; Busch, N.A.; Maess, B. Memory-matches evoke human gamma-responses. BMC Neurosci. 2004, 5, 13.
[37]  Lutzenberger, W.; Pulvermuller, F.; Birbaumer, N. Words and pseudowords elicit distinct patterns of 30-Hz EEG responses in humans. Neurosci. Lett. 1994, 176, 115–118.
[38]  Pantev, C. Evoked and induced gamma-band activity of the human cortex. Brain Topogr. 1995, 7, 321–330.
[39]  Lenz, D.; Schadow, J.; Thaerig, S.; Busch, N.A.; Heann, C.S. What’s that sound? Matches with auditory long-term memory induce gamma activity in human EEG. Int. J. Psychophysiol. 2007, 64, 31–38.
[40]  Miltner, W.H.R.; Braun, C.; Arnold, M.; Witte, H.; Taub, E. Coherence of gamma-band EEG activity as a basis for associative learning. Nature 1999, 397, 434–436.
[41]  Heim, S.; Keil, A. Effects of classical conditioning on identification and cortical processing of speech syllables. Exp. Brain Res. 2006, 175, 411–424.
[42]  Hamame, C.M.; Cosmelli, D.; Henriquez, R.; Aboitiz, F. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. PLoS One 2011, 6, e19221.
[43]  Klimesch, W.; Sauseng, P.; Hanslmayer, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88.
[44]  Palva, S.; Palva, J.M. New vistas for α-frequency band oscillations. Trends Neurosci. 2007, 30, 150–158.
[45]  Pfurtscheller, G.; Lopes da Silva, F.H. Functional Meaning of Event-Related Desynchronization (ERD) and Synchronization (ERS). In Event-Related Desynchronizaton. Handbook of Electroencephalography and Clinical Neurophysiology; Pfurtscheller, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 51–65.
[46]  Neubauer, A.C.; Grabner, R.H.; Freudenthaler, H.; Beckmann, J.; Guthke, J. Intelligence and individual differences in becoming neurally efficient. Acta Psychol. (Amst.) 2004, 116, 55–74.
[47]  Gruber, T.; Muller, M.M. Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Brain Res. Cogn. Brain Res. 2002, 13, 377–392.
[48]  Reiterer, S.; Pereda, E.; Bhattacharya, J. Measuring second language proficiency with EEG synchronization: How functional cortical networks and hemispheric involvement differ as a function of proficiency level in second language speakers. Second Lang. 2009, 25, 77–106.
[49]  Reiterer, S.; Hemmelmann, C.; Rappelsberger, P.; Berger, M.L. Decreased EEG coherence between prefrontal electrodes: A correlate of high language proficiency? Exp. Brain Res. 2005, 163, 109–113.
[50]  Chandrasekaran, B.; Krishnan, A.; Gandour, J. Relative influence of musical and linguistic experience on early cortical processing of pith contours. Brain Lang. 2009, 108, 1–9.
[51]  Gottfried, T.L. Music and Language Learning: Effect of Musical Training on Learning L2 Speech Contrasts. In Language Experience in Second Language Speech Learning: In Honor of James Emil Flege; Bohn, O.-S., Munro, M., Eds.; John Benjamins: Amsterdam, The Netherlands, 2007; pp. 221–237.
[52]  Wong, P.C.M.; Skoe, E.; Russo, N.; Dees, T.; Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch pattern. Nat. Neurosci. 2007, 10, 420–422.
[53]  Bertrand, O.; Bohorquez, J.; Pernier, J. Time-frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials. IEEE Trans. Biomed. Eng. 1994, 41, 77–88.
[54]  Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208.
[55]  Rodriguez, E.; George, N.; Lachaux, J.P.; Martinerie, J.; Renault, B.; Varela, F.J. Perception’s shadow: Long-distance synchronization of human brain activity. Nature 1999, 397, 430–433.
[56]  Heim, S.; Thomas Friedman, J.; Keil, A.; Benasich, A.A. Reduced sensory oscillatory activity during rapid auditory processing as a correlate of language-learning impairment. J. Neurolinguist. 2011, 24, 538–555.
[57]  Weisz, N.; Keil, A.; Wienbruch, C.; Hoffmeister, S.; Elbert, T. One set of sounds, two tonotopic maps: Exploring auditory cortex with amplitude-modulated tones. Clin. Neurophysiol. 2004, 115, 1249–1258.
[58]  Sanders, L.D.; Neville, H.J. An ERP study of continuous speech processing. I. Segmentation, semantics, and syntax in native speakers. Brain Res. Cogn. Brain Res. 2003, 15, 228–240.
[59]  Gross, J.; Kujala, J.; Hamalainen, M.; Timmermann, L.; Schnitzler, A.; Salmelin, R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA 2001, 98, 694–699.
[60]  Keil, A.; Costa, V.; Smith, J.C.; Sabatinelli, D.; McGinnis, E.M.; Bradley, M.M.; Lang, P.J. Tagging cortical networks in emotion: A topographical analysis. Hum. Brain Mapp. 2012, 33, 2920–2931.
[61]  Greenblatt, R.E.; Pflieger, M.E.; Ossadtchi, A.E. Connectivity measures applied to human brain electrophysiological data. . J. Neurosci. Methods 2012, 207, 1–16.
[62]  Greenhouse, S.W.; Geisser, S. On methods in the analysis of profile data. Psychometrika 1959, 24, 95–112.
[63]  Sutoh, T.; Yabe, H.; Sato, Y.; Hiruma, T.; Kaneko, S. Event-related desynchronization during an auditory oddball task. Clin. Neurophysiol. 2000, 111, 858–862.
[64]  H?ller, Y.; Bergmann, J.; Kronbichler, M.; Crone, J.S.; Schmid, E.V.; Golaszewski, S.; Ladurner, G. Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness. Clin. Neurophysiol. 2011, 122, 1744–1754.
[65]  Kaiser, J.; Lutzenberger, W. Human gamma-band activity: A window to cognitive processing. Neuroreport 2005, 16, 207–211.
[66]  Pfurtscheller, G.; Stancák, A.J.; Neuper, C. Event-related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. Int. J. Psychophysiol. 1996, 24, 39–46.
[67]  Foxe, J.J.; Simpson, G.V.; Ahlfors, S.P. Parieto-occipital ~10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport 1998, 9, 3929–3033.
[68]  Fuentemilla, L.; Marco-Pallarésa, J.; Münte, T.F.; Grau, C. Theta EEG oscillatory activity and auditory change detection. Brain Res. 2008, 1220, 93–101.
[69]  Hsiao, F.-J.; Wu, Z.-A.; Ho, L.-T.; Lin, Y.-Y. Theta oscillation during auditory change detection: An MEG study. Biol. Psychol. 2009, 81, 58–66.
[70]  Ko, D.; Kwon, S.; Lee, G.-T.; Im, C.; Kim, K.; Jung, K.-Y. Theta oscillation related to the auditory discrimination process in Mismatch Negativity: Oddball versus control paradigm. J. Clin. Neurol. 2012, 8, 35–42.
[71]  Hauk, O.; Keil, A.; Elbert, T.; Muller, M.M. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG. J. Neurosci. Methods 2002, 113, 111–122.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133