全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Therapeutic Effect of Caffeine Treatment Immediately Following Neonatal Hypoxic-Ischemic Injury on Spatial Memory in Male Rats

DOI: 10.3390/brainsci3010177

Keywords: neuroprotection, hypoxic ischemic encephalopathy, Morris water maze, neonatal

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hypoxia Ischemia (HI) refers to the disruption of blood and/or oxygen delivery to the brain. Term infants suffering perinatal complications that result in decreased blood flow and/or oxygen delivery to the brain are at risk for HI. Among a variety of developmental delays in this population, HI injured infants demonstrate subsequent memory deficits. The Rice-Vannucci rodent HI model can be used to explore behavioral deficits following early HI events, as well as possible therapeutic agents to help reduce deleterious outcomes. Caffeine is an adenosine receptor antagonist that has recently shown promising results as a therapeutic agent following HI injury. The current study sought to investigate the therapeutic benefit of caffeine following early HI injury in male rats. On post-natal day (P) 7, HI injury was induced (cauterization of the right common carotid artery, followed by two hours of 8% oxygen). Male sham animals received only a midline incision with no manipulation of the artery followed by room air exposure for two hours. Subsets of HI and sham animals then received either an intraperitoneal (i.p.) injection of caffeine (10 mg/kg), or vehicle (sterile saline) immediately following hypoxia. All animals later underwent testing on the Morris Water Maze (MWM) from P90 to P95. Results show that HI injured animals (with no caffeine treatment) displayed significant deficits on the MWM task relative to shams. These deficits were attenuated by caffeine treatment when given immediately following the induction of HI. We also found a reduction in right cortical volume (ipsilateral to injury) in HI saline animals as compared to shams, while right cortical volume in the HI caffeine treated animals was intermediate. These findings suggest that caffeine is a potential therapeutic agent that could be used in HI injured infants to reduce brain injury and preserve subsequent cognitive function.

References

[1]  Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124, doi:10.1016/S1474-4422(08)70294-1.
[2]  De Vries, L.S.; Cowan, F.M. Evolving understanding of hypoxic-ischemic encephalopathy in the term infant. Semin. Pediatr. Neurol. 2009, 16, 216–225, doi:10.1016/j.spen.2009.09.001.
[3]  Vannucci, R.C. Hypoxic-ischemic encephalopathy. Am. J. Perinatol. 2000, 17, 113–120, doi:10.1055/s-2000-9293.
[4]  Volpe, J.J. Neurology of the Newborn, 5th ed.; Elsevier Health Sciences: New York, NY, USA, 2008; pp. 347–400.
[5]  Briscoe, J.; Gathercole, S.E.; Marlow, N. Short-term memory and language outcomes after extreme prematurity at birth. J. Speech Lang. Hear. Res. 1998, 41, 654–666.
[6]  Vicari, S.; Caravale, B.; Carlesimo, G.A.; Casadei, A.M.; Allemand, F. Spatial working memory deficits in children at ages 3–4 who were low birth weight, preterm infants. Neuropsychology 2004, 18, 673–678, doi:10.1037/0894-4105.18.4.673.
[7]  Luu, T.M.; Ment, L.; Allan, W.; Schneider, K.; Vohr, B.R. Executive and memory function in adolescents born very preterm. Pediatrics 2011, 127, e639–e646, doi:10.1542/peds.2010-1421.
[8]  Beauchamp, M.H.; Thompson, D.K.; Howard, K.; Doyle, L.W.; Egan, G.F.; Inder, T.E.; Anderson, P.J. Preterm infant hippocampal volumes correlate with later working memory deficits. Brain 2008, 131, 2986–2994, doi:10.1093/brain/awn227.
[9]  Marlow, N.; Rose, A.S.; Rands, C.E.; Draper, E.S. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F380–F387, doi:10.1136/adc.2004.067520.
[10]  Vannucci, R.C.; Vannucci, S.J. A model of perinatal hypoxic-ischemic brain damage. Ann. N. Y. Acad. Sci. 1997, 19, 234–249, doi:10.1111/j.1749-6632.1997.tb48634.x.
[11]  Vannucci, R.C.; Vannucci, S.J. Perinatal hypoxic-ischemic brain damage: Evolution of an animal model. Dev. Neurosci. 2005, 27, 81–86, doi:10.1159/000085978.
[12]  Delcour, M.; Olivier, P.; Chambon, C.; Pansiot, J.; Russier, M.; Liberge, M.; Xin, D.; Gestreau, C.; Alescio-Laurier, B.; Gressens, P.; et al. Neuroanatomical, sensorimotor and cognitive deficits in adult rats with white matter injury following prenatal ischemia. Brain Pathol. 2012, 22, 1–16, doi:10.1111/j.1750-3639.2011.00504.x.
[13]  McClure, M.M.; Peiffer, A.M.; Rosen, G.D.; Fitch, R.H. Auditory processing deficits in rats with neonatal hypoxic-ischemic injury. Int. J. Dev. Neurosci. 2005, 23, 351–362, doi:10.1016/j.ijdevneu.2004.12.008.
[14]  McClure, M.M.; Threlkeld, S.W.; Fitch, R.H. Auditory processing and learning/memory following erythropoietin administration in neonatally hypoxic-ischemic injured rats. Brain Res. 2007, 1132, 203–209, doi:10.1016/j.brainres.2006.11.006.
[15]  Arteni, N.S.; Salgueiro, J.; Torres, I.; Achaval, M.; Netto, C.A. Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res. 2003, 973, 171–178, doi:10.1016/S0006-8993(03)02436-3.
[16]  Arteni, N.S.; Pereira, L.O.; Rodrigues, A.L.; Lakinsky, D.; Achaval, M.E.; Netta, C.A. Lateralized and sex-dependant behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav. Brain Res. 2010, 210, 92–98, doi:10.1016/j.bbr.2010.02.015.
[17]  Ikeda, T.; Mishima, K.; Yoshikawa, T.; Iwasaki, K.; Fujiwara, M.; Xia, X.Y.; Ikenoue, T. Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav. Brain Res. 2001, 118, 17–25, doi:10.1016/S0166-4328(00)00287-4.
[18]  Hill, C.A.; Threlkeld, S.W.; Fitch, R.H. Early testosterone modulated sex differences in behavioral outcome following neonatal hypoxia ischemia in rats. Int. J. Dev. Neurosci. 2011, 29, 381–388, doi:10.1016/j.ijdevneu.2011.03.005.
[19]  McClure, M.M.; Threlkeld, S.W.; Rosen, G.D.; Fitch, R.H. Auditory processing deficits in unilaterally and bilaterally injured hypoxic-ischemic rats. Neuroreport 2005, 16, 1309–1312, doi:10.1097/01.wnr.0000175613.16183.6c.
[20]  McClure, M.M.; Threlkeld, S.W.; Rosen, G.D.; Fitch, R.H. Rapid auditory processing and learning deficits in rats with P1 versus P7 neonatal hypoxic-ischemic injury. Behav. Brain Res. 2006, 172, 114–121, doi:10.1016/j.bbr.2006.05.003.
[21]  McClure, M.; Threlkeld, S.; Fitch, R.H. The effects of erythropoietin on auditory processing following neonatal hypoxic-ischemic injury. Brain Res. 2006, 1087, 190–195, doi:10.1016/j.brainres.2006.03.016.
[22]  Volpe, J.J. Perinatal brain injury: From pathogenesis to neuroprotection. Ment. Retard. Dev. Disabil. Res. Rev. 2001, 7, 56–64, doi:10.1002/1098-2779(200102)7:1<56::AID-MRDD1008>3.0.CO;2-A.
[23]  Cunha, R.A. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal. 2005, 1, 111–134, doi:10.1007/s11302-005-0649-1.
[24]  Rivkees, S.A.; Zhao, Z.; Porter, G.; Turner, C. Influences of adenosine on the fetus and newborn. Mol. Genet. Metab. 2001, 74, 160–171, doi:10.1006/mgme.2001.3217.
[25]  Fredholm, B.B.; Chen, J.; Cunha, R.; Svenningsson, P.; Vaugeois, J. Adenosine and Brain Function. Int. Rev. Neurobiol. 2005, 63, 191–270, doi:10.1016/S0074-7742(05)63007-3.
[26]  Ribeiro, J.A.; Sebastiao, A.M. Caffeine and Adenosine. J. Alzheimers Dis. 2010, 20, 3–15.
[27]  Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W. Caffeine for Apnea of Prematurity Trial Group. Caffeine therapy for apnea of prematurity. N. Engl. J. Med. 2006, 354, 2112–2121, doi:10.1056/NEJMoa054065.
[28]  Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W. Caffeine for Apnea of Prematurity Trial Group. Long-term effects of caffeine therapy for apnea of prematurity. N. Engl. J. Med. 2007, 357, 1893–1902, doi:10.1056/NEJMoa073679.
[29]  Stevenson, D.K. On the caffeination of prematurity. N. Engl. J. Med. 2007, 357, 1967–1968, doi:10.1056/NEJMe078200.
[30]  Benitz, W.E. Use of caffeine for apnea of prematurity also has long-term neurodevelopmental benefits. J. Pediatr. 2008, 152, 740–741, doi:10.1016/j.jpeds.2008.02.024.
[31]  Gray, P.H.; Flenady, V.J.; Charles, B.G.; Steer, P.A. Caffeine Collaborative Study Group. Caffeine citrate for very preterm infants: Effects on development, temperament and behaviour. J. Paediatr. Child Health 2011, 47, 167–172, doi:10.1111/j.1440-1754.2010.01943.x.
[32]  Supcun, S.; Kutz, P.; Pielemeier, W.; Roll, C. Caffeine increases cerebral cortical activity in preterm infants. J. Pediatr. 2010, 156, 490–491, doi:10.1016/j.jpeds.2009.10.033.
[33]  Back, S.A.; Craig, A.; Luo, N.L.; Ren, J.; Akundi, R.S.; Ribeiro, I.; Rivkees, S.A. Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann. Neurol. 2006, 60, 696–705, doi:10.1002/ana.21008.
[34]  Rivkees, S.A.; Wendler, C.C. Adverse and protective influences of adenosine on the newborn and embryo: Implications for preterm white matter injury and embryo protection. Pediatr. Res. 2011, 69, 271–278, doi:10.1203/PDR.0b013e31820efbcf.
[35]  Pimentel, V.C.; Belle, L.P.; Pinherio, F.V.; Bona, K.S.; Da Luz, S.C.A.; Moretto, M.B. Adenosine deaminase activity, lipid peroxidation and astrocyte responses in the cerebral cortex of rats alter neonatal hypoxia ischemia. Int. J. Dev. Neurosci. 2009, 27, 857–862, doi:10.1016/j.ijdevneu.2009.06.003.
[36]  Pimentel, V.C.; Pinherio, F.V.; de Bona, K.S.; Maldonado, P.A.; de Silva, C.R.; de Olivera, S.M.; Ferreria, J.; Bertoncheli, C.M.; Schetinger, M.R.; Da Luz, S.C.A.; Moretto, M.B. Hypoxic-ischemic brain injury stimulates inflammatory responses and enzymatic activity in the hippocampus of neonatal rats. Brain Res. 2011, 1388, 134–140.
[37]  Turner, C.P.; Yan, H.; Schwartz, M.; Othman, T.; Rivkees, S.A. A1 adenosine receptor activation induces ventriculomegaly and white matter loss. Neuroreport 2002, 13, 1199–1204, doi:10.1097/00001756-200207020-00026.
[38]  Ryzhov, S.; McCaleb, J.L.; Goldstein, A.E.; Biaggioni, I.; Feoktistov, I. Role of adenosine receptors in the regulation of angiogenic factors and neovascularization in hypoxia. J. Pharmacol. Exp. Ther. 2007, 320, 565–572.
[39]  Dale, N.; Pearson, T.; Frenguelli, B.G. Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J. Physiol. 2000, 526, 143–155, doi:10.1111/j.1469-7793.2000.00143.x.
[40]  Frenguelli, B.G.; Llaudet, E.; Dale, N. High-resolution real time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J. Neurochem. 2003, 86, 1506–1515, doi:10.1046/j.1471-4159.2003.01957.x.
[41]  Ilie, A.; Ciocan, D.; Zagrean, A.M.; Nita, D.A.; Zagrean, L.; Moldovan, M. Endogenous activation of adenosine A1 receptor accelerates ischemic suppression of spontaneous electrocortical activity. J. Neurophysiol. 2006, 96, 2809–2814, doi:10.1152/jn.00466.2006.
[42]  Turner, C.P.; Seli, M.; Ment, L.; Stewart, W.; Yan, H.; Johansson, B.; Fredholm, B.B.; Blackburn, M.; Rivkees, S.A. A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc. Natl. Acad. Sci. USA. 2003, 100, 11718–11722, doi:10.1073/pnas.1931975100.
[43]  Aden, U.; Halldner, L.; Lagercrantz, H.; Dalmau, I.; Ledent, C.; Fredholm, B.B. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 2003, 34, 739–744, doi:10.1161/01.STR.0000060204.67672.8B.
[44]  Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133.
[45]  Costenla, A.R.; Cunha, R.A.; de Mendonca, A. Caffeine, adenosine receptors and synaptic plasticity. J. Alzheimers Dis. 2010, 20, 25–34.
[46]  Aden, U. Methylxanthines during pregnancy and early postnatal life. Handb. Exp. Pharmacol. 2011, 200, 373–389, doi:10.1007/978-3-642-13443-2_14.
[47]  Da Silva, R.S.; Richetti, S.K.; da Silveira, V.G.; Battastini, A.M.; Bogo, M.R.; Lara, D.R.; Bonan, C.D. Maternal caffeine intake affects acetylcholinesterase in hippocampus of neonate rat. Int. J. Dev. Neurosci. 2008, 26, 339–343, doi:10.1016/j.ijdevneu.2007.12.006.
[48]  Yazdani, M.; Hartman, A.D.; Hiller, H.I.; Temples, T.E.; Nakamoto, T. Chronic caffeine intake alters the composition of various parts of the brain in young growing rats. Dev. Pharnacol. Ther. 1988, 11, 102–108.
[49]  Guillet, R.; Kellogg, C. Neonatal exposure to therapeutic caffeine alters the ontogeny of adenosine A1 receptors in the brain of rats. Neuropharmacology 1991, 30, 489–496, doi:10.1016/0028-3908(91)90011-Y.
[50]  Silva, C.G.; Metin, C.; Machado, N.J.; Darmopil, S.; Launay, P.; Ghestem, A.; Nesa, M.P.; Baqi, Y.; Muller, C.E.; Ivanov, A.; et al. Caffeine Exposure during Pregnancy Disrupts Gabaergic Circuits in Offspring. In Presented at the Society for Neuroscience Conference, New Orleans, LA, USA, October 2012.
[51]  Chavez-Valdez, R.; Ahlawat, R.; Wills-Karp, M.; Nathan, A.; Ezell, T.; Gauda, E.B. Correlation between serum caffeine levels and changes in cytokine profile in a cohort of preterm infants. J. Pediatr. 2011, 158, 57–64, doi:10.1016/j.jpeds.2010.06.051.
[52]  Chavez-Valdez, R.; Wills-Karp, M.; Ahlawat, R.; Cristofalo, E.A.; Nathan, A.; Gauda, E.B. Caffeine modulates TNF-alpha production by cord blood monocytes: The role of adenosine receptors. Pediatr. Res. 2009, 65, 203–208, doi:10.1203/PDR.0b013e31818d66b1.
[53]  Connolly, S.; Kingsbury, T.J. Caffeine modulates CREB-dependant gene expression in developing cortical neurons. Biochem. Biophys. Res. Commun. 2010, 25, 152–156, doi:10.1016/j.bbrc.2010.05.054.
[54]  Cognato, G.P.; Agostinho, P.M.; Hockemeyer, J.; Muller, C.E.; Souza, D.O.; Cunha, R.A. Caffeine and adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J. Neurochem. 2010, 112, 453–462, doi:10.1111/j.1471-4159.2009.06465.x.
[55]  Charles, B.G.; Townsend, S.R.; Steer, P.A.; Flenady, V.J.; Gray, P.H.; Shearman, A. Caffeine citrate treatment for extremely premature infants with apnea: Population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Ther. Drug Monit. 2008, 30, 709–716, doi:10.1097/FTD.0b013e3181898b6f.
[56]  Zaidi, S.I.A.; Jafri, A.; Martin, R.J.; Haxhiu, M.A. Adenosine A2A receptors are expressed by GABAergic neurons of medulla oblongata in developing rat. Brain Res. 2006, 1071, 42–53, doi:10.1016/j.brainres.2005.11.077.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413