全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Protective Effect of Glibenclamide in a Model of Hemorrhagic Encephalopathy of Prematurity

DOI: 10.3390/brainsci3010215

Keywords: encephalopathy of prematurity, germinal matrix hemorrhage, intraventricular hemorrhage, choroid plexus hemorrhage, sulfonylurea receptor 1, glibenclamide

Full-Text   Cite this paper   Add to My Lib

Abstract:

We studied a model of hemorrhagic encephalopathy of prematurity (EP) that closely recapitulates findings in humans with hemorrhagic EP. This model involves tandem insults of 20 min intrauterine ischemia (IUI) plus an episode of elevated venous pressure induced by intraperitoneal glycerol on post-natal day (P) 0. We examined Sur1 expression, which is upregulated after focal ischemia but has not been studied after brief global ischemia including IUI. We found that 20 min IUI resulted in robust upregulation of Sur1 in periventricular microvessels and tissues. We studied tandem insult pups from untreated or vehicle-treated dams (TI-CTR), and tandem insult pups from dams administered a low-dose, non-hypoglycemogenic infusion of the Sur1 blocker, glibenclamide, for 1 week after IUI (TI-GLIB). Compared to pups from the TI-CTR group, pups from the TI-GLIB group had significantly fewer and less severe hemorrhages on P1, performed significantly better on the beam walk and accelerating Rotarod on P35 and in tests of thigmotaxis and rapid learning on P35–49, and had significantly greater body and brain weights at P52. We conclude that low-dose glibenclamide administered to the mother at the end of pregnancy protects pups subjected to IUI from post-natal events of elevated venous pressure and its consequences.

References

[1]  Tarby, T.J.; Volpe, J.J. Intraventricular hemorrhage in the premature infant. Pediatr. Clin. North Am. 1982, 29, 1077–1104.
[2]  Armstrong, D.L.; Sauls, C.D.; Goddard-Finegold, J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am. J. Dis. Child. 1987, 141, 617–621.
[3]  Vergani, P.; Locatelli, A.; Doria, V.; Assi, F.; Paterlini, G.; Pezzullo, J.C.; Ghidini, A. Intraventricular hemorrhage and periventricular leukomalacia in preterm infants. Obstet. Gynecol. 2004, 104, 225–231.
[4]  Volpe, J.J. Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics 2005, 116, 221–225, doi:10.1542/peds.2005-0191.
[5]  Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124, doi:10.1016/S1474-4422(08)70294-1.
[6]  Kinney, H.C. The encephalopathy of prematurity: One pediatric neuropathologist’s perspective. Semin. Pediatr. Neurol. 2009, 16, 179–190, doi:10.1016/j.spen.2009.09.003.
[7]  Folkerth, R.D. Neuropathologic substrate of cerebral palsy. J. Child Neurol. 2005, 20, 940–949, doi:10.1177/08830738050200120301.
[8]  Volpe, J.J. Neurologic outcome of prematurity. Arch. Neurol. 1998, 55, 297–300, doi:10.1001/archneur.55.3.297.
[9]  Bassan, H.; Limperopoulos, C.; Visconti, K.; Mayer, D.L.; Feldman, H.A.; Avery, L.; Benson, C.B.; Stewart, J.; Ringer, S.A.; Soul, J.S.; et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 2007, 120, 785–792, doi:10.1542/peds.2007-0211.
[10]  Aarnoudse-Moens, C.S.; Weisglas-Kuperus, N.; van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009, 124, 717–728, doi:10.1542/peds.2008-2816.
[11]  Claas, M.J.; Bruinse, H.W.; Koopman, C.; van Haastert, I.C.; Peelen, L.M.; de Vries, L.S. Two-year neurodevelopmental outcome of preterm born children ≤750 g at birth. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, 169–177, doi:10.1136/adc.2009.174433.
[12]  Doyle, L.W.; Anderson, P.J. Adult outcome of extremely preterm infants. Pediatrics 2010, 126, 342–351, doi:10.1542/peds.2010-0710.
[13]  Levy, M.L.; Masri, L.S.; McComb, J.G. Outcome for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery 1997, 41, 1111–1117, doi:10.1097/00006123-199711000-00015.
[14]  Pikus, H.J.; Levy, M.L.; Gans, W.; Mendel, E.; McComb, J.G. Outcome, cost analysis, and long-term follow-up in preterm infants with massive grade IV germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery 1997, 40, 983–988, doi:10.1097/00006123-199705000-00021.
[15]  Roze, E.; Kerstjens, J.M.; Maathuis, C.G.; ter Horst, H.J.; Bos, A.F. Risk factors for adverse outcome in preterm infants with periventricular hemorrhagic infarction. Pediatrics 2008, 122, e46–e52, doi:10.1542/peds.2007-3305.
[16]  Balasubramaniam, J.; Xue, M.; Buist, R.J.; Ivanco, T.L.; Natuik, S.; Del Bigio, M.R. Persistent motor deficit following infusion of autologous blood into the periventricular region of neonatal rats. Exp. Neurol. 2006, 197, 122–132, doi:10.1016/j.expneurol.2005.09.010.
[17]  Juliet, P.A.; Frost, E.E.; Balasubramaniam, J.; Del Bigio, M.R. Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in culture. J. Neurochem. 2009, 109, 1285–1299, doi:10.1111/j.1471-4159.2009.06060.x.
[18]  Mito, T.; Becker, L.E.; Perlman, M.; Takashima, S. A neuropathologic analysis of neonatal deaths occurring in a single neonatal unit over a 20-year period. Pediatr. Pathol. 1993, 13, 773–785, doi:10.3109/15513819309048264.
[19]  Bloch, J.R. Antenatal events causing neonatal brain injury in premature infants. J. Obstet. Gynecol. Neonatal Nurs. 2005, 34, 358–366, doi:10.1177/0884217505276255.
[20]  Ballabh, P. Intraventricular hemorrhage in premature infants: Mechanism of disease. Pediatr. Res. 2010, 67, 1–8, doi:10.1203/PDR.0b013e3181c1b176.
[21]  Sotrel, A.; Lorenzo, A.V. Ultrastructure of blood vessels in the ganglionic eminence of premature rabbits with spontaneous germinal matrix hemorrhages. J. Neuropathol. Exp. Neurol. 1989, 48, 462–482, doi:10.1097/00005072-198907000-00007.
[22]  Ment, L.R.; Stewart, W.B.; Ardito, T.A.; Madri, J.A. Beagle pup germinal matrix maturation studies. Stroke 1991, 22, 390–395, doi:10.1161/01.STR.22.3.390.
[23]  Ment, L.R.; Stewart, W.B.; Ardito, T.A.; Madri, J.A. Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res. Dev. Brain Res. 1995, 84, 142–149, doi:10.1016/0165-3806(94)00168-Y.
[24]  Wei, W.; Xin-Ya, S.; Cai-Dong, L.; Zhong-Han, K.; Chun-Peng, C. Relationship between extracellular matrix both in choroid plexus and the wall of lateral ventricles and intraventricular hemorrhage in preterm neonates. Clin. Anat. 2000, 13, 422–428, doi:10.1002/1098-2353(2000)13:6<422::AID-CA5>3.0.CO;2-F.
[25]  Anstrom, J.A.; Brown, W.R.; Moody, D.M.; Thore, C.R.; Challa, V.R.; Block, S.M. Subependymal veins in premature neonates: implications for hemorrhage. Pediatr. Neurol. 2004, 30, 46–53, doi:10.1016/S0887-8994(03)00404-1.
[26]  Scott, D.E.; Bergevin, M. Fine structural correlates of the choroid plexus of the lateral cerebral ventricle of the human fetal brain. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005, 282, 8–12.
[27]  Braun, A.; Xu, H.; Hu, F.; Kocherlakota, P.; Siegel, D.; Chander, P.; Ungvari, Z.; Csiszar, A.; Nedergaard, M.; Ballabh, P. Paucity of pericytes in germinal matrix vasculature of premature infants. J. Neurosci. 2007, 27, 12012–12024.
[28]  Xu, H.; Hu, F.; Sado, Y.; Ninomiya, Y.; Borza, D.B.; Ungvari, Z.; Lagamma, E.F.; Csiszar, A.; Nedergaard, M.; Ballabh, P. Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J. Neurosci. Res. 2008, 86, 1482–1500, doi:10.1002/jnr.21618.
[29]  Ballabh, P.; Xu, H.; Hu, F.; Braun, A.; Smith, K.; Rivera, A.; Lou, N.; Ungvari, Z.; Goldman, S.A.; Csiszar, A.; Nedergaard, M. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat. Med. 2007, 13, 477–485, doi:10.1038/nm1558.
[30]  Baburamani, A.A.; Ek, C.J.; Walker, D.W.; Castillo-Melendez, M. Vulnerability of the developing brain to hypoxic-ischemic damage: Contribution of the cerebral vasculature to injury and repair? Front. Physiol. 2012, 3, 424.
[31]  Ghazi-Birry, H.S.; Brown, W.R.; Moody, D.M.; Challa, V.R.; Block, S.M.; Reboussin, D.M. Human germinal matrix: Venous origin of hemorrhage and vascular characteristics. AJNR Am. J. Neuroradiol. 1997, 18, 219–229.
[32]  Nakamura, Y.; Okudera, T.; Fukuda, S.; Hashimoto, T. Germinal matrix hemorrhage of venous origin in preterm neonates. Hum. Pathol. 1990, 21, 1059–1062, doi:10.1016/0046-8177(90)90256-5.
[33]  Kadri, H.; Mawla, A.A.; Kazah, J. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv. Syst. 2006, 22, 1086–1090, doi:10.1007/s00381-006-0050-6.
[34]  Aly, H.; Hammad, T.A.; Essers, J.; Wung, J.T. Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants? Brain Dev. 2012, 34, 201–205, doi:10.1016/j.braindev.2011.04.006.
[35]  Pellicer, A.; Gaya, F.; Madero, R.; Quero, J.; Cabanas, F. Noninvasive continuous monitoring of the effects of head position on brain hemodynamics in ventilated infants. Pediatrics 2002, 109, 434–440, doi:10.1542/peds.109.3.434.
[36]  Donat, J.F.; Okazaki, H.; Kleinberg, F.; Reagan, T.J. Intraventricular hemorrhages in full-term and premature infants. Mayo. Clin. Proc. 1978, 53, 437–441.
[37]  Lacey, D.J.; Terplan, K. Intraventricular hemorrhage in full-term neonates. Dev. Med. Child Neurol. 1982, 24, 332–337, doi:10.1111/j.1469-8749.1982.tb13625.x.
[38]  Reeder, J.D.; Kaude, J.V.; Setzer, E.S. Choroid plexus hemorrhage in premature neonates: Recognition by sonography. AJNR Am. J. Neuroradiol. 1982, 3, 619–622.
[39]  Shen, E.Y.; Hung, H.Y.; Hsu, C.H.; Kao, H.A.; Huang, F.Y. Choroid plexus hemorrhage: Clinical and sonografic findings of nine cases. Zhonghua Yi Xue Za Zhi (Taipei) 1988, 42, 47–52.
[40]  Gradnitzer, E.; Urlesberger, B.; Maurer, U.; Riccabona, M.; Muller, W. Cerebral hemorrhage in term newborn infants—An analysis of 10 years (1989–1999). Wien. Med. Wochenschr. 2002, 152, 9–13.
[41]  Koltz, M.T.; Tosun, C.; Kurland, D.B.; Coksaygan, T.; Castellani, R.J.; Ivanova, S.; Gerzanich, V.; Simard, J.M. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity. J. Neurosurg. Pediatr. 2011, 8, 628–639, doi:10.3171/2011.9.PEDS11174.
[42]  Kunte, H.; Busch, M.A.; Trostdorf, K.; Vollnberg, B.; Harms, L.; Mehta, R.; Castellani, R.J.; Mandava, P.; Kent, T.A.; Simard, J.M. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann. Neurol. 2012, 72, 799–806, doi:10.1002/ana.23680.
[43]  Simard, J.M.; Woo, S.K.; Schwartzbauer, G.T.; Gerzanich, V. Sulfonylurea receptor 1 in central nervous system injury: A focused review. J. Cereb. Blood Flow Metab. 2012, 32, 1699–1717, doi:10.1038/jcbfm.2012.91.
[44]  Simard, J.M.; Castellani, R.J.; Ivanova, S.; Koltz, M.T.; Gerzanich, V. Sulfonylurea receptor 1 in the germinal matrix of premature infants. Pediatr. Res. 2008, 64, 648–652, doi:10.1203/PDR.0b013e318186e5a9.
[45]  Kunte, H.; Schmidt, S.; Eliasziw, M.; del Zoppo, G.J.; Simard, J.M.; Masuhr, F.; Weih, M.; Dirnagl, U. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 2007, 38, 2526–2530, doi:10.1161/STROKEAHA.107.482216.
[46]  Woo, S.K.; Kwon, M.S.; Geng, Z.; Chen, Z.; Ivanov, A.; Bhatta, S.; Gerzanich, V.; Simard, J.M. Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J. Cereb. Blood Flow Metab. 2012, 32, 525–536, doi:10.1038/jcbfm.2011.159.
[47]  Sivan, E.; Feldman, B.; Dolitzki, M.; Nevo, N.; Dekel, N.; Karasik, A. Glyburide crosses the placenta in vivo in pregnant rats. Diabetologia 1995, 38, 753–756, doi:10.1007/s001250050348.
[48]  Sienkiewicz-Jarosz, H.; Czlonkowska, A.I.; Siemiatkowski, M.; Maciejak, P.; Szyndler, J.; Plaznik, A. The effects of physostigmine and cholinergic receptor ligands on novelty-induced neophobia. J. Neural Transm. 2000, 107, 1403–1412, doi:10.1007/s007020070004.
[49]  Lee, I.; Rao, G.; Knierim, J.J. A double dissociation between hippocampal subfields: Differential time course of CA3 and CA1 place cells for processing changed environments. Neuron 2004, 42, 803–815, doi:10.1016/j.neuron.2004.05.010.
[50]  Leutgeb, J.K.; Leutgeb, S.; Moser, M.B.; Moser, E.I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 2007, 315, 961–966, doi:10.1126/science.1135801.
[51]  McHugh, T.J.; Jones, M.W.; Quinn, J.J.; Balthasar, N.; Coppari, R.; Elmquist, J.K.; Lowell, B.B.; Fanselow, M.S.; Wilson, M.A.; Tonegawa, S. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 2007, 317, 94–99, doi:10.1126/science.1140263.
[52]  Nakashiba, T.; Young, J.Z.; McHugh, T.J.; Buhl, D.L.; Tonegawa, S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 2008, 319, 1260–1264, doi:10.1126/science.1151120.
[53]  Liu, J.; Feng, Z.C.; Yin, X.J.; Chen, H.; Lu, J.; Qiao, X. The role of antenatal corticosteroids for improving the maturation of choroid plexus capillaries in fetal mice. Eur J. Pediatr. 2008, 167, 1209–1212, doi:10.1007/s00431-007-0649-y.
[54]  Vinukonda, G.; Dummula, K.; Malik, S.; Hu, F.; Thompson, C.I.; Csiszar, A.; Ungvari, Z.; Ballabh, P. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke 2010, 41, 1766–1773, doi:10.1161/STROKEAHA.110.588400.
[55]  Aghajafari, F.; Murphy, K.; Matthews, S.; Ohlsson, A.; Amankwah, K.; Hannah, M. Repeated doses of antenatal corticosteroids in animals: A systematic review. Am. J. Obstet. Gynecol. 2002, 186, 843–849, doi:10.1067/mob.2002.121624.
[56]  Murphy, K.E.; Hannah, M.E.; Willan, A.R.; Hewson, S.A.; Ohlsson, A.; Kelly, E.N.; Matthews, S.G.; Saigal, S.; Asztalos, E.; Ross, S.; et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): A randomised controlled trial. Lancet 2008, 372, 2143–2151, doi:10.1016/S0140-6736(08)61929-7.
[57]  Zhou, Y.; Fathali, N.; Lekic, T.; Tang, J.; Zhang, J.H. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009, 1270, 131–139, doi:10.1016/j.brainres.2009.03.010.
[58]  Wali, B.; Ishrat, T.; Atif, F.; Hua, F.; Stein, D.G.; Sayeed, I. Glibenclamide administration attenuates infarct volume, hemispheric swelling, and functional impairments following permanent focal cerebral ischemia in rats. Stroke Res. Treat. 2012, 2012, 460909.
[59]  Nakahata, K.; Kinoshita, H.; Hirano, Y.; Kimoto, Y.; Iranami, H.; Hatano, Y. Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex. Anesthesiology 2003, 99, 1333–1339, doi:10.1097/00000542-200312000-00014.
[60]  Reid, J.M.; Davies, A.G.; Ashcroft, F.M.; Paterson, D.J. Effect of L-NMMA, cromakalim, and glibenclamide on cerebral blood flow in hypercapnia and hypoxia. Am. J. Physiol. 1995, 269, H916–H922.
[61]  Ortega, F.J.; Jolkkonen, J.; Mahy, N.; Rodriguez, M.J. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2013, 33, 356–364, doi:10.1038/jcbfm.2012.166.
[62]  Ortega, F.J.; Gimeno-Bayon, J.; Espinosa-Parrilla, J.F.; Carrasco, J.L.; Batlle, M.; Pugliese, M.; Mahy, N.; Rodriguez, M.J. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp. Neurol. 2012, 235, 282–296, doi:10.1016/j.expneurol.2012.02.010.
[63]  Feig, D.S.; Briggs, G.G.; Kraemer, J.M.; Ambrose, P.J.; Moskovitz, D.N.; Nageotte, M.; Donat, D.J.; Padilla, G.; Wan, S.; Klein, J.; Koren, G. Transfer of glyburide and glipizide into breast milk. Diabetes Care 2005, 28, 1851–1855, doi:10.2337/diacare.28.8.1851.
[64]  Glatstein, M.M.; Djokanovic, N.; Garcia-Bournissen, F.; Finkelstein, Y.; Koren, G. Use of hypoglycemic drugs during lactation. Can. Fam. Physician 2009, 55, 371–373.
[65]  Balasubramaniam, J.; Del Bigio, M.R. Animal models of germinal matrix hemorrhage. J. Child. Neurol. 2006, 21, 365–371.
[66]  Alles, Y.C.; Greggio, S.; Alles, R.M.; Azevedo, P.N.; Xavier, L.L.; DaCosta, J.C. A novel preclinical rodent model of collagenase-induced germinal matrix/intraventricular hemorrhage. Brain Res. 2010, 1356, 130–138, doi:10.1016/j.brainres.2010.07.106.
[67]  Lekic, T.; Manaenko, A.; Rolland, W.; Tang, J.; Zhang, J.H. A novel preclinical model of germinal matrix hemorrhage using neonatal rats. Acta Neurochir. Suppl. 2011, 111, 55–60, doi:10.1007/978-3-7091-0693-8_10.
[68]  Lekic, T.; Manaenko, A.; Rolland, W.; Krafft, P.R.; Peters, R.; Hartman, R.E.; Altay, O.; Tang, J.; Zhang, J.H. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp. Neurol. 2012, 236, 69–78, doi:10.1016/j.expneurol.2012.04.003.
[69]  Lorenzo, A.V.; Welch, K.; Conner, S. Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J. Neurosurg. 1982, 56, 404–410, doi:10.3171/jns.1982.56.3.0404.
[70]  Conner, E.S.; Lorenzo, A.V.; Welch, K.; Dorval, B. The role of intracranial hypotension in neonatal intraventricular hemorrhage. J. Neurosurg. 1983, 58, 204–209, doi:10.3171/jns.1983.58.2.0204.
[71]  Chua, C.O.; Chahboune, H.; Braun, A.; Dummula, K.; Chua, C.E.; Yu, J.; Ungvari, Z.; Sherbany, A.A.; Hyder, F.; Ballabh, P. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke 2009, 40, 3369–3377, doi:10.1161/STROKEAHA.109.549212.
[72]  Coulter, D.M.; Gooch, W.M. Falling intracranial pressure: an important element in the genesis of intracranial hemorrhage in the beagle puppy. Biol. Neonate 1993, 63, 316–326, doi:10.1159/000243948.
[73]  Georgiadis, P.; Xu, H.; Chua, C.; Hu, F.; Collins, L.; Huynh, C.; Lagamma, E.F.; Ballabh, P. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke 2008, 39, 3378–3388, doi:10.1161/STROKEAHA.107.510883.
[74]  Simard, J.M.; Geng, Z.; Silver, F.L.; Sheth, K.N.; Kimberly, W.T.; Stern, B.J.; Colucci, M.; Gerzanich, V. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann. N. Y. Acad. Sci. 2012, 1268, 95–107, doi:10.1111/j.1749-6632.2012.06705.x.
[75]  Woo, S.K.; Kwon, M.S.; Ivanov, A.; Gerzanich, V.; Simard, J.M. The Sulfonylurea receptor 1 (Sur1)—Transient receptor potential melastatin 4 (Trpm4) channel. J. Biol. Chem. 2013, 288, 3655–3667, doi:10.1074/jbc.M112.428219.
[76]  Xu, Q.; Ji, Y.S.; Schmedtje, J.F., Jr. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J. Biol. Chem. 2000, 275, 24583–24589.
[77]  Simard, J.M.; Chen, M.; Tarasov, K.V.; Bhatta, S.; Ivanova, S.; Melnitchenko, L.; Tsymbalyuk, N.; West, G.A.; Gerzanich, V. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat. Med. 2006, 12, 433–440, doi:10.1038/nm1390.
[78]  Melamed, N.; Yogev, Y. Can pregnant diabetics be treated with glyburide? Womens Health (Lond. Engl.) 2009, 5, 649–658, doi:10.2217/whe.09.55.
[79]  Moretti, M.E.; Rezvani, M.; Koren, G. Safety of glyburide for gestational diabetes: A meta-analysis of pregnancy outcomes. Ann. Pharmacother. 2008, 42, 483–490, doi:10.1345/aph.1K577.
[80]  Kimber-Trojnar, Z.; Marciniak, B.; Leszczynska-Gorzelak, B.; Trojnar, M.; Oleszczuk, J. Glyburide for the treatment of gestational diabetes mellitus. Pharmacol. Rep. 2008, 60, 308–318.
[81]  Cheng, Y.W.; Chung, J.H.; Block-Kurbisch, I.; Inturrisi, M.; Caughey, A.B. Treatment of gestational diabetes mellitus: Glyburide compared to subcutaneous insulin therapy and associated perinatal outcomes. J. Matern. Fetal Neonatal Med. 2011, 25, 379–384.
[82]  Feig, D.S.; Briggs, G.G.; Koren, G. Oral antidiabetic agents in pregnancy and lactation: A paradigm shift? Ann. Pharmacother. 2007, 41, 1174–1180, doi:10.1345/aph.1K045.
[83]  Merlob, P.; Levitt, O.; Stahl, B. Oral antihyperglycemic agents during pregnancy and lactation: A review. Paediatr. Drugs 2002, 4, 755–760.
[84]  Ballas, J.; Moore, T.R.; Ramos, G.A. Management of diabetes in pregnancy. Curr. Diab. Rep. 2012, 12, 33–42, doi:10.1007/s11892-011-0249-0.
[85]  Hebert, M.F.; Ma, X.; Naraharisetti, S.B.; Krudys, K.M.; Umans, J.G.; Hankins, G.D.; Caritis, S.N.; Miodovnik, M.; Mattison, D.R.; Unadkat, J.D.; et al. Are we optimizing gestational diabetes treatment with glyburide? The pharmacologic basis for better clinical practice. Clin. Pharmacol. Ther. 2009, 85, 607–614, doi:10.1038/clpt.2009.5.
[86]  Alexander, B.T. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension 2003, 41, 457–462, doi:10.1161/01.HYP.0000053448.95913.3D.
[87]  Simard, J.M.; Woo, S.K.; Tsymbalyuk, N.; Voloshyn, O.; Yurovsky, V.; Ivanova, S.; Lee, R.; Gerzanich, V. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Transl. Stroke Res. 2012, 3, 286–295, doi:10.1007/s12975-012-0149-x.
[88]  Feeney, D.M.; Gonzalez, A.; Law, W.A. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 1982, 217, 855–857.
[89]  Wagner, A.K.; Postal, B.A.; Darrah, S.D.; Chen, X.; Khan, A.S. Deficits in novelty exploration after controlled cortical impact. J. Neurotrauma 2007, 24, 1308–1320, doi:10.1089/neu.2007.0274.
[90]  D’Hooge, R.; de Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 2001, 36, 60–90, doi:10.1016/S0165-0173(01)00067-4.
[91]  Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60, doi:10.1016/0165-0270(84)90007-4.
[92]  Patel, A.D.; Gerzanich, V.; Geng, Z.; Simard, J.M. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J. Neuropathol. Exp. Neurol. 2010, 69, 1177–1190, doi:10.1097/NEN.0b013e3181fbf6d6.
[93]  Rinaman, L. Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. J. Comp. Neurol. 2001, 438, 411–422, doi:10.1002/cne.1324.
[94]  Conover, W.J.; Iman, R.L. Rank Transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–133.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133